Title: | Kernel Smoothing |
---|---|
Description: | Kernel smoothers for univariate and multivariate data, with comprehensive visualisation and bandwidth selection capabilities, including for densities, density derivatives, cumulative distributions, clustering, classification, density ridges, significant modal regions, and two-sample hypothesis tests. Chacon & Duong (2018) <doi:10.1201/9780429485572>. |
Authors: | Tarn Duong [aut, cre] , Matt Wand [ctb] , Jose Chacon [ctb], Artur Gramacki [ctb] |
Maintainer: | Tarn Duong <[email protected]> |
License: | GPL-2 | GPL-3 |
Version: | 1.14.3 |
Built: | 2024-11-20 03:50:12 UTC |
Source: | https://github.com/cran/ks |
Kernel smoothing for data from 1- to 6-dimensions.
There are three main types of functions in this package:
computing kernel estimators - these function names begin with ‘k’
computing bandwidth selectors - these begin with ‘h’ (1-d) or ‘H’ (>1-d)
displaying kernel estimators - these begin with ‘plot’.
The kernel used throughout is the normal (Gaussian) kernel .
For 1-d data, the bandwidth
is the standard deviation of
the normal kernel, whereas for multivariate data, the bandwidth matrix
is the variance matrix.
–For kernel density estimation, kde
computes
The bandwidth matrix is a matrix of smoothing
parameters and its choice is crucial for the performance of kernel
estimators. For display, its
plot
method calls plot.kde
.
–For kernel density estimation, there are several varieties of bandwidth selectors
least squares (or unbiased) cross validation (LSCV or UCV) hlscv
(1-d);
Hlscv
, Hlscv.diag
(2- to 6-d)
smoothed cross validation (SCV) hscv
(1-d);
Hscv
, Hscv.diag
(2- to 6-d)
–For kernel density support estimation, the main function is
ksupp
which is (the convex hull of)
for a suitable level . This is closely related to the
-level set of
.
–For truncated kernel density estimation, the main function is
kde.truncate
for a bounded data support . The standard density
estimate
is truncated and rescaled to give
unit integral over
. Its
plot
method calls plot.kde
.
–For boundary kernel density estimation where the kernel function is
modified explicitly in the boundary region, the main function is
kde.boundary
for a boundary kernel . Its
plot
method calls plot.kde
.
–For variable kernel density estimation where the bandwidth is not a
constant matrix, the main functions are kde.balloon
and
kde.sp
For the balloon estimation the
bandwidth varies with the estimation point
, whereas
for the sample point estimation
the bandwidth varies with the data point
.
Their
plot
methods call plot.kde
. The bandwidth
selectors for kde.balloon
are based on the normal scale bandwidth
Hns(,deriv.order=2)
via the MSE minimal formula, and for
kde.SP
on Hns(,deriv.order=4)
via the Abramson formula.
–For kernel density derivative estimation, the main function is kdde
The bandwidth selectors are a modified subset of those for
kde
, i.e. Hlscv
, Hns
, Hpi
, Hscv
with deriv.order>0
.
Its plot
method is plot.kdde
for plotting each
partial derivative singly.
–For kernel summary curvature estimation, the main function is
kcurv
where is the kernel Hessian matrix estimate.
It has the same structure as a kernel density estimate so its
plot
method calls plot.kde
.
–For kernel discriminant analysis, the main function is
kda
which computes density estimates for each the
groups in the training data, and the discriminant surface.
Its plot
method is plot.kda
. The wrapper function
hkda
, Hkda
computes
bandwidths for each group in the training data for kde
,
e.g. hpi
, Hpi
.
–For kernel functional estimation, the main function is
kfe
which computes the -th order integrated density functional
The plug-in selectors are hpi.kfe
(1-d), Hpi.kfe
(2- to 6-d).
Kernel functional estimates are usually not required to computed
directly by the user, but only within other functions in the package.
–For kernel-based 2-sample testing, the main function is
kde.test
which computes the integrated
distance between the two density estimates as the test
statistic, comprising a linear combination of 0-th order kernel
functional estimates:
and the corresponding p-value. The are
zero order kernel functional estimates with the subscripts indicating
that 1 = sample 1 only, 2 = sample 2 only, and 12, 21 =
samples 1 and 2. The bandwidth selectors are
hpi.kfe
,
Hpi.kfe
with deriv.order=0
.
–For kernel-based local 2-sample testing, the main function is
kde.local.test
which computes the squared distance
between the two density estimates as the test
statistic
and the corresponding local
p-values. The bandwidth selectors are those used with kde
,
e.g. hpi, Hpi
.
–For kernel cumulative distribution function estimation, the main
function is kcde
where is the integrated kernel.
The bandwidth selectors are
hpi.kcde
,
Hpi.kcde
. Its plot
method is
plot.kcde
.
There exist analogous functions for the survival function .
–For kernel estimation of a ROC (receiver operating characteristic)
curve to compare two samples from , the main function is
kroc
based on the cumulative distribution functions of
.
The bandwidth selectors are those used with kcde
,
e.g. hpi.kcde, Hpi.kcde
for
. Its
plot
method
is plot.kroc
.
–For kernel estimation of a copula, the
main function is kcopula
where is
the
-th quantile of of the
-th marginal
distribution
.
The bandwidth selectors are those used with
kcde
for
.
Its
plot
method is plot.kcde
.
–For kernel mean shift clustering, the main function is
kms
. The mean shift recurrence relation of the candidate
point
where and
,
is iterated until
converges to its
local mode in the density estimate
by following
the density gradient ascent paths. This mode determines the cluster
label for
. The bandwidth selectors are those used with
kdde(,deriv.order=1)
.
–For kernel density ridge estimation, the main function is
kdr
. The kernel density ridge recurrence relation of
the candidate point
where ,
and
is the 1-dimensional projected
density gradient,
is iterated until
converges to the ridge in the
density estimate. The bandwidth selectors are those used with
kdde(,deriv.order=2)
.
– For kernel feature significance, the main function
kfs
. The hypothesis test at a point is
,
i.e. the density Hessian matrix
is negative definite.
The test statistic is
where is the
Hessian estimate, vech is the vector-half operator, and
is an estimate of the null variance.
is
approximately
distributed with
degrees of freedom.
If
is rejected, then
belongs to a significant modal region.
The bandwidth selectors are those used with
kdde(,deriv.order=2)
. Its plot
method is
plot.kfs
.
–For deconvolution density estimation, the main function is
kdcde
. A weighted kernel density
estimation with the contaminated data ,
is utilised, where the weights are chosen via a
quadratic optimisation involving the error variance and the
regularisation parameter. The bandwidth selectors are those used with
kde
.
–Binned kernel estimation is an approximation to the exact kernel estimation and is available for d=1, 2, 3, 4. This makes kernel estimators feasible for large samples.
–For an overview of this package with 2-d density estimation, see
vignette("kde")
.
–For ks 1.11.1, the misc3d and
rgl (3-d plot), oz (Australian map) packages, and for ks
1.14.2, the plot3D (3-d plot) package, have been moved from
Depends to Suggests. This was done to allow ks to be installed
on systems where these latter graphical-based packages can't be
installed. Furthermore, since the future of OpenGL in R is not certain,
plot3D becomes the default for 3D plotting for ks
1.12.0. RGL plots are still supported though these may be deprecated in the
future.
Tarn Duong for most of the package. M. P. Wand for the binned estimation, univariate plug-in selector and univariate density derivative estimator code. J. E. Chacon for the unconstrained pilot functional estimation and fast implementation of derivative-based estimation code. A. and J. Gramacki for the binned estimation for unconstrained bandwidth matrices.
Bowman, A. & Azzalini, A. (1997) Applied Smoothing Techniques for Data Analysis. Oxford University Press, Oxford.
Chacon, J.E. & Duong, T. (2018) Multivariate Kernel Smoothing and Its Applications. Chapman & Hall/CRC, Boca Raton.
Duong, T. (2004) Bandwidth Matrices for Multivariate Kernel Density Estimation. Ph.D. Thesis, University of Western Australia.
Scott, D.W. (2015) Multivariate Density Estimation: Theory, Practice, and Visualization (2nd edn). John Wiley & Sons, New York.
Silverman, B. (1986) Density Estimation for Statistics and Data Analysis. Chapman & Hall/CRC, London.
Simonoff, J. S. (1996) Smoothing Methods in Statistics. Springer-Verlag, New York.
Wand, M.P. & Jones, M.C. (1995) Kernel Smoothing. Chapman & Hall/CRC, London.
feature, sm, KernSmooth
This data set contains the hourly mean air quality measurements from 01 January 2013 to 31 December 2016 in the Chatelet underground train station in the Paris metro.
data(air)
data(air)
A matrix with 35039 rows and 8 columns.
Each row corresponds to an hourly measurement.
The first column is the date (yyyy-mm-dd),
the second is the time (hh:mm),
the third is the nitric oxide NO concentration (g/m3),
the fourth is the nitrogen dioxide NO concentration (g/m3),
the fifth is the concentration of particulate matter less than 10
microns PM10 (ppm),
the sixth is the carbon dioxide concentration CO
(g/m3),
the seventh is the temperature (degrees Celsius),
the eighth is the relative humidity (percentage).
RATP (2016) Qualite de l'air mesuree dans la station Chatelet, https://data.iledefrance.fr/explore/dataset/qualite-de-l-air-mesuree-dans-la-station-chatelet-rer-a. Regie autonome des transports parisiens - Departement Developpement, Innovation et Territoires. Accessed 2017-09-27.
Linear binning for 1- to 4-dimensional data.
binning(x, H, h, bgridsize, xmin, xmax, supp=3.7, w, gridtype="linear")
binning(x, H, h, bgridsize, xmin, xmax, supp=3.7, w, gridtype="linear")
x |
matrix of data values |
H , h
|
bandwidth matrix, scalar bandwidth |
xmin , xmax
|
vector of minimum/maximum values for grid |
supp |
effective support for standard normal is [-supp,supp] |
bgridsize |
vector of binning grid sizes |
w |
vector of weights. Default is a vector of all ones. |
gridtype |
not yet implemented |
For ks 1.10.0, binning is available for unconstrained
(non-diagonal) bandwidth matrices. Code is used courtesy of A. &
J. Gramacki, and M.P. Wand. Default
bgridsize
are
d=1: 401; d=2: rep(151, 2); d=3: rep(51, 3); d=4: rep(21, 4).
Returns a list with 2 fields
counts |
linear binning counts |
eval.points |
vector (d=1) or list (d>=2) of grid points in each dimension |
Gramacki, A. & Gramacki, J. (2016) FFT-based fast computation of multivariate kernel estimators with unconstrained bandwidth matrices. Journal of Computational & Graphical Statistics, 26, 459-462.
Wand, M.P. & Jones, M.C. (1995) Kernel Smoothing. Chapman & Hall. London.
data(unicef) ubinned <- binning(x=unicef)
data(unicef) ubinned <- binning(x=unicef)
This data set contains the cardiotocographic measurements from healthy, suspect and pathological foetuses.
data(cardio)
data(cardio)
A matrix with 2126 rows and 8 columns. Each row corresponds to a foetal cardiotocogram. The class label for the foetal state is the last column: N = normal, S = suspect, P = pathological. Details for all variables are found in the link below.
Lichman, M. (2013) UCI Machine learning repository: cardiotocography data set. University of California, Irvine, School of Information and Computer Sciences. Accessed 2017-05-18.
Contour levels and sizes.
contourLevels(x, ...) ## S3 method for class 'kde' contourLevels(x, prob, cont, nlevels=5, approx=TRUE, ...) ## S3 method for class 'kda' contourLevels(x, prob, cont, nlevels=5, approx=TRUE, ...) ## S3 method for class 'kdde' contourLevels(x, prob, cont, nlevels=5, approx=TRUE, which.deriv.ind=1, ...) contourSizes(x, abs.cont, cont=c(25,50,75), approx=TRUE) contourProbs(x, abs.cont, cont=c(25,50,75), approx=TRUE)
contourLevels(x, ...) ## S3 method for class 'kde' contourLevels(x, prob, cont, nlevels=5, approx=TRUE, ...) ## S3 method for class 'kda' contourLevels(x, prob, cont, nlevels=5, approx=TRUE, ...) ## S3 method for class 'kdde' contourLevels(x, prob, cont, nlevels=5, approx=TRUE, which.deriv.ind=1, ...) contourSizes(x, abs.cont, cont=c(25,50,75), approx=TRUE) contourProbs(x, abs.cont, cont=c(25,50,75), approx=TRUE)
x |
object of class |
prob |
vector of probabilities corresponding to highest density regions |
cont |
vector of percentages which correspond to the complement
of |
abs.cont |
vector of absolute contour levels |
nlevels |
number of pretty contour levels |
approx |
flag to compute approximate contour levels. Default is TRUE. |
which.deriv.ind |
partial derivative index. Default is 1. |
... |
other parameters |
–For contourLevels
, the most straightforward is to specify prob
.
The heights of the corresponding highest density region with probability prob
are
computed. The cont
parameter here is consistent with
cont
parameter from plot.kde
, plot.kdde
, and plot.kda
i.e. cont=(1-prob)*100%
.
If both prob
and cont
are missing then a pretty set of
nlevels
contours are computed.
–For contourSizes
, the length, area, volume etc. and for contourProbs
,
the probability, are approximated by Riemann sums. These are rough approximations and
depend highly on the estimation grid, and so should be interpreted carefully.
If approx=FALSE
, then the exact KDE is computed. Otherwise
it is interpolated from an existing KDE grid: this can dramatically
reduce computation time for large data sets.
–For contourLevels
, for kde
objects, returns vector of
heights. For kda
objects, returns a list of vectors, one for
each training group. For kdde
objects, returns a matrix of
vectors, one row for each partial derivative.
–For contourSizes
, returns an approximation of the Lebesgue measure of
level set, i.e. length (d=1), area (d=2), volume (d=3), hyper-volume (d>4).
–For contourProbs
, returns an approximation of the probability measure of
level set.
set.seed(8192) x <- rmvnorm.mixt(n=1000, mus=c(0,0), Sigmas=diag(2), props=1) fhat <- kde(x=x, binned=TRUE) contourLevels(fhat, cont=c(75, 50, 25)) contourProbs(fhat, abs.cont=contourLevels(fhat, cont=50)) ## compare approx prob with target prob=0.5 contourSizes(fhat, cont=25, approx=TRUE) ## compare to approx circle of radius=0.75 with area=1.77
set.seed(8192) x <- rmvnorm.mixt(n=1000, mus=c(0,0), Sigmas=diag(2), props=1) fhat <- kde(x=x, binned=TRUE) contourLevels(fhat, cont=c(75, 50, 25)) contourProbs(fhat, abs.cont=contourLevels(fhat, cont=50)) ## compare approx prob with target prob=0.5 contourSizes(fhat, cont=25, approx=TRUE) ## compare to approx circle of radius=0.75 with area=1.77
This data set contains the geographical locations of the specimens of Grevillea uncinulata, more commonly known as the Hook leaf grevillea, which is an endemic floral species to south Western Australia. This region is one of the 25 ‘biodiversity hotspots’ which are 'areas featuring exceptional concentrations of endemic species and experiencing exceptional loss of habitat'.
data(grevillea)
data(grevillea)
A matrix with 222 rows and 2 columns. Each row corresponds to an observed plant. The first column is the longitude (decimal degrees), the second is the latitude (decimal degrees).
CSIRO (2016) Atlas of Living Australia: Grevillea uncinulata Diels, https://bie.ala.org.au/species/https://id.biodiversity.org.au/node/apni/2895039. Commonwealth Scientific and Industrial Research Organisation. Accessed 2016-03-11.
BCV bandwidth matrix for bivariate data.
Hbcv(x, whichbcv=1, Hstart, binned=FALSE, amise=FALSE, verbose=FALSE) Hbcv.diag(x, whichbcv=1, Hstart, binned=FALSE, amise=FALSE, verbose=FALSE)
Hbcv(x, whichbcv=1, Hstart, binned=FALSE, amise=FALSE, verbose=FALSE) Hbcv.diag(x, whichbcv=1, Hstart, binned=FALSE, amise=FALSE, verbose=FALSE)
x |
matrix of data values |
whichbcv |
1 = BCV1, 2 = BCV2. See details below. |
Hstart |
initial bandwidth matrix, used in numerical optimisation |
binned |
flag for binned kernel estimation. Default is FALSE. |
amise |
flag to return the minimal BCV value. Default is FALSE. |
verbose |
flag to print out progress information. Default is FALSE. |
Use Hbcv
for unconstrained bandwidth matrices and Hbcv.diag
for diagonal bandwidth matrices. These selectors are only
available for bivariate data. Two types of BCV criteria are
considered here. They are known as BCV1 and BCV2, from Sain, Baggerly
& Scott (1994) and only differ slightly. These BCV
surfaces can have multiple minima and so it can be quite difficult to
locate the most appropriate minimum. Some times, there can be no local minimum at all so there
may be no finite BCV selector.
For details about the advanced options for binned
, Hstart
, see Hpi
.
BCV bandwidth matrix. If amise=TRUE
then the minimal BCV value is returned too.
Sain, S.R, Baggerly, K.A. & Scott, D.W. (1994) Cross-validation of multivariate densities. Journal of the American Statistical Association, 82, 1131-1146.
data(unicef) Hbcv(unicef) Hbcv.diag(unicef)
data(unicef) Hbcv(unicef) Hbcv.diag(unicef)
Histogram density estimate for 1- and 2-dimensional data.
histde(x, binw, xmin, xmax, adj=0) ## S3 method for class 'histde' predict(object, ..., x)
histde(x, binw, xmin, xmax, adj=0) ## S3 method for class 'histde' predict(object, ..., x)
x |
matrix of data values |
binw |
(vector) of binwidths |
xmin , xmax
|
vector of minimum/maximum values for grid |
adj |
displacement of default anchor point, in percentage of 1 bin |
object |
object of class |
... |
other parameters |
If binw
is missing, the default binwidth is , the
normal scale selector.
If xmin
is missing then it defaults to the data minimum. If
xmax
is missing then it defaults to the data maximum.
A histogram density estimate is an object of class histde
which is a
list with fields:
x |
data points - same as input |
eval.points |
vector or list of points at which the estimate is evaluated |
estimate |
density estimate at |
binw |
(vector of) bandwidths |
nbin |
(vector of) number of bins |
names |
variable names |
## positive data example set.seed(8192) x <- 2^rnorm(100) fhat <- histde(x=x) plot(fhat, border=6) points(c(0.5, 1), predict(fhat, x=c(0.5, 1))) ## large data example on a non-default grid set.seed(8192) x <- rmvnorm.mixt(10000, mus=c(0,0), Sigmas=invvech(c(1,0.8,1))) fhat <- histde(x=x, xmin=c(-5,-5), xmax=c(5,5)) plot(fhat) ## See other examples in ? plot.histde
## positive data example set.seed(8192) x <- 2^rnorm(100) fhat <- histde(x=x) plot(fhat, border=6) points(c(0.5, 1), predict(fhat, x=c(0.5, 1))) ## large data example on a non-default grid set.seed(8192) x <- rmvnorm.mixt(10000, mus=c(0,0), Sigmas=invvech(c(1,0.8,1))) fhat <- histde(x=x, xmin=c(-5,-5), xmax=c(5,5)) plot(fhat) ## See other examples in ? plot.histde
LSCV bandwidth for 1- to 6-dimensional data
Hlscv(x, Hstart, binned, bgridsize, amise=FALSE, deriv.order=0, verbose=FALSE, optim.fun="optim", trunc) Hlscv.diag(x, Hstart, binned, bgridsize, amise=FALSE, deriv.order=0, verbose=FALSE, optim.fun="optim", trunc) hlscv(x, binned=TRUE, bgridsize, amise=FALSE, deriv.order=0, bw.ucv=TRUE) Hucv(...) Hucv.diag(...) hucv(...)
Hlscv(x, Hstart, binned, bgridsize, amise=FALSE, deriv.order=0, verbose=FALSE, optim.fun="optim", trunc) Hlscv.diag(x, Hstart, binned, bgridsize, amise=FALSE, deriv.order=0, verbose=FALSE, optim.fun="optim", trunc) hlscv(x, binned=TRUE, bgridsize, amise=FALSE, deriv.order=0, bw.ucv=TRUE) Hucv(...) Hucv.diag(...) hucv(...)
x |
vector or matrix of data values |
Hstart |
initial bandwidth matrix, used in numerical optimisation |
binned |
flag for binned kernel estimation |
bgridsize |
vector of binning grid sizes |
amise |
flag to return the minimal LSCV value. Default is FALSE. |
deriv.order |
derivative order |
verbose |
flag to print out progress information. Default is FALSE. |
optim.fun |
optimiser function: one of |
trunc |
parameter to control truncation for numerical optimisation. Default is 4 for density.deriv>0, otherwise no truncation. For details see below. |
bw.ucv |
flag to use |
... |
parameters as above |
hlscv
is the univariate LSCV
selector of Bowman (1984) and Rudemo (1982). Hlscv
is a
multivariate generalisation of this. Use Hlscv
for unconstrained
bandwidth matrices and Hlscv.diag
for diagonal bandwidth matrices.
Hucv
, Hucv.diag
and hucv
are aliases with UCV
(unbiased cross validation) instead of LSCV.
For ks 1.13.0, the default minimiser in
hlscv
is based on the UCV minimiser
stats::bw.ucv
. To reproduce prior behaviour, set bw.ucv=FALSE
.
Truncation of the parameter space is usually required for the LSCV selector,
for r > 0, to find a reasonable solution to the numerical optimisation.
If a candidate matrix H
is
such that det(H)
is not in [1/trunc, trunc]*det(H0)
or
abs(LSCV(H)) > trunc*abs(LSCV0)
then the LSCV(H)
is reset to LSCV0
where
H0=Hns(x)
and LSCV0=LSCV(H0)
.
For details about the advanced options for binned,Hstart,optim.fun
,
see Hpi
.
LSCV bandwidth. If amise=TRUE
then the minimal LSCV value is returned too.
Bowman, A. (1984) An alternative method of cross-validation for the smoothing of kernel density estimates. Biometrika, 71, 353-360.
Rudemo, M. (1982) Empirical choice of histograms and kernel density estimators. Scandinavian Journal of Statistics, 9, 65-78.
data(forbes, package="MASS") Hlscv(forbes) hlscv(forbes$bp)
data(forbes, package="MASS") Hlscv(forbes) hlscv(forbes$bp)
Normal mixture bandwidth.
Hnm(x, deriv.order=0, G=1:9, subset.ind, mise.flag=FALSE, verbose, ...) Hnm.diag(x, deriv.order=0, G=1:9, subset.ind, mise.flag=FALSE, verbose, ...) hnm(x, deriv.order=0, G=1:9, subset.ind, mise.flag=FALSE, verbose, ... )
Hnm(x, deriv.order=0, G=1:9, subset.ind, mise.flag=FALSE, verbose, ...) Hnm.diag(x, deriv.order=0, G=1:9, subset.ind, mise.flag=FALSE, verbose, ...) hnm(x, deriv.order=0, G=1:9, subset.ind, mise.flag=FALSE, verbose, ... )
x |
vector/matrix of data values |
deriv.order |
derivative order |
G |
range of number of mixture components |
subset.ind |
index vector of subset of |
mise.flag |
flag to use MISE or AMISE minimisation. Default is FALSE. |
verbose |
flag to print out progress information. Default is FALSE. |
... |
other parameters for |
The normal mixture fit is provided by the Mclust
function in
the mclust package. Hnm
is then Hmise.mixt
(if
mise.flag=TRUE
) or Hamise.mixt
(if mise.flag=FALSE
) with
these fitted normal mixture parameters. Likewise for
Hnm.diag
, hnm
.
Normal mixture bandwidth. If mise=TRUE
then the minimal MISE value is returned too.
Cwik, J. & Koronacki, J. (1997). A combined adaptive-mixtures/plug-in estimator of multivariate probability densities. Computational Statistics and Data Analysis, 26, 199-218.
data(unicef) Hnm(unicef)
data(unicef) Hnm(unicef)
Normal scale bandwidth.
Hns(x, deriv.order=0) Hns.diag(x) hns(x, deriv.order=0) Hns.kcde(x) hns.kcde(x)
Hns(x, deriv.order=0) Hns.diag(x) hns(x, deriv.order=0) Hns.kcde(x) hns.kcde(x)
x |
vector/matrix of data values |
deriv.order |
derivative order |
Hns
is equal to (4/(n*(d+2*r+2)))^(2/(d+2*r+4))*var(x)
,
n = sample size, d = dimension of data, r = derivative
order. hns
is the analogue of Hns
for 1-d data. These
can be used for density (derivative) estimators
kde
, kdde
.
The equivalents for distribution estimators kcde
are
Hns.kcde
and hns.cde
.
Normal scale bandwidth.
Chacon J.E., Duong, T. & Wand, M.P. (2011). Asymptotics for general multivariate kernel density derivative estimators. Statistica Sinica, 21, 807-840.
data(forbes, package="MASS") Hns(forbes, deriv.order=2) hns(forbes$bp, deriv.order=2)
data(forbes, package="MASS") Hns(forbes, deriv.order=2) hns(forbes$bp, deriv.order=2)
Plug-in bandwidth for for 1- to 6-dimensional data.
Hpi(x, nstage=2, pilot, pre="sphere", Hstart, binned, bgridsize, amise=FALSE, deriv.order=0, verbose=FALSE, optim.fun="optim") Hpi.diag(x, nstage=2, pilot, pre="scale", Hstart, binned, bgridsize, amise=FALSE, deriv.order=0, verbose=FALSE, optim.fun="optim") hpi(x, nstage=2, binned=TRUE, bgridsize, deriv.order=0)
Hpi(x, nstage=2, pilot, pre="sphere", Hstart, binned, bgridsize, amise=FALSE, deriv.order=0, verbose=FALSE, optim.fun="optim") Hpi.diag(x, nstage=2, pilot, pre="scale", Hstart, binned, bgridsize, amise=FALSE, deriv.order=0, verbose=FALSE, optim.fun="optim") hpi(x, nstage=2, binned=TRUE, bgridsize, deriv.order=0)
x |
vector or matrix of data values |
nstage |
number of stages in the plug-in bandwidth selector (1 or 2) |
pilot |
"amse" = AMSE pilot bandwidths |
pre |
"scale" = |
Hstart |
initial bandwidth matrix, used in numerical optimisation |
binned |
flag for binned kernel estimation |
bgridsize |
vector of binning grid sizes |
amise |
flag to return the minimal scaled PI value |
deriv.order |
derivative order |
verbose |
flag to print out progress information. Default is FALSE. |
optim.fun |
optimiser function: one of |
hpi(,deriv.order=0)
is the univariate plug-in
selector of Wand & Jones (1994), i.e. it is exactly the same as
KernSmooth's dpik
. For deriv.order>0, the formula is
taken from Wand & Jones (1995). Hpi
is a multivariate
generalisation of this. Use Hpi
for unconstrained bandwidth matrices and
Hpi.diag
for diagonal bandwidth matrices.
The default pilot is "samse"
for d=2,r=0, and
"dscalar"
otherwise.
For AMSE pilot bandwidths, see Wand & Jones (1994). For
SAMSE pilot bandwidths, see Duong & Hazelton (2003). The latter is a
modification of the former, in order to remove any possible problems
with non-positive definiteness. Unconstrained and higher order
derivative pilot bandwidths are from Chacon & Duong (2010).
For d=1, 2, 3, 4 and binned=TRUE
,
estimates are computed over a binning grid defined
by bgridsize
. Otherwise it's computed exactly.
If Hstart
is not given then it defaults to Hns(x)
.
For ks 1.11.1, the default optimisation function is
optim.fun="optim"
. To reinstate the previous functionality, use
optim.fun="nlm"
.
Plug-in bandwidth.
If amise=TRUE
then the minimal scaled PI value is returned too.
Chacon, J.E. & Duong, T. (2010) Multivariate plug-in bandwidth selection with unconstrained pilot matrices. Test, 19, 375-398.
Duong, T. & Hazelton, M.L. (2003) Plug-in bandwidth matrices for bivariate kernel density estimation. Journal of Nonparametric Statistics, 15, 17-30.
Sheather, S.J. & Jones, M.C. (1991) A reliable data-based bandwidth selection method for kernel density estimation. Journal of the Royal Statistical Society Series B, 53, 683-690.
Wand, M.P. & Jones, M.C. (1994) Multivariate plug-in bandwidth selection. Computational Statistics, 9, 97-116.
data(unicef) Hpi(unicef, pilot="dscalar") hpi(unicef[,1])
data(unicef) Hpi(unicef, pilot="dscalar") hpi(unicef[,1])
This data set contains the haematopoietic stem cell transplant (HSCT) measurements obtained by a flow cytometer from mouse subjects. A flow cytometer measures the spectra of fluorescent signals from biological cell samples to study their properties.
data(hsct)
data(hsct)
A matrix with 39128 rows and 6 columns. The first column is the FITC-CD45.1 fluorescence (0-1023), the second is the PE-Ly65/Mac1 fluorescence (0-1023), the third is the PI-LiveDead fluorescence (0-1023), the fourth is the APC-CD45.2 fluorescence (0-1023), the fifth is the class label of the cell type (1, 2, 3, 4, 5), the sixth the mouse subject number (5, 6, 9, 12).
Aghaeepour, N., Finak, G., The FlowCAP Consortium, The DREAM Consortium, Hoos, H., Mosmann, T. R., Brinkman, R., Gottardo, R. & Scheuermann, R. H. (2013) Critical assessment of automated flow cytometry data analysis techniques, Nature Methods 10, 228-238.
SCV bandwidth for 1- to 6-dimensional data.
Hscv(x, nstage=2, pre="sphere", pilot, Hstart, binned, bgridsize, amise=FALSE, deriv.order=0, verbose=FALSE, optim.fun="optim") Hscv.diag(x, nstage=2, pre="scale", pilot, Hstart, binned, bgridsize, amise=FALSE, deriv.order=0, verbose=FALSE, optim.fun="optim") hscv(x, nstage=2, binned=TRUE, bgridsize, plot=FALSE)
Hscv(x, nstage=2, pre="sphere", pilot, Hstart, binned, bgridsize, amise=FALSE, deriv.order=0, verbose=FALSE, optim.fun="optim") Hscv.diag(x, nstage=2, pre="scale", pilot, Hstart, binned, bgridsize, amise=FALSE, deriv.order=0, verbose=FALSE, optim.fun="optim") hscv(x, nstage=2, binned=TRUE, bgridsize, plot=FALSE)
x |
vector or matrix of data values |
pre |
"scale" = |
pilot |
"amse" = AMSE pilot bandwidths |
Hstart |
initial bandwidth matrix, used in numerical optimisation |
binned |
flag for binned kernel estimation |
bgridsize |
vector of binning grid sizes |
amise |
flag to return the minimal scaled SCV value. Default is FALSE. |
deriv.order |
derivative order |
verbose |
flag to print out progress information. Default is FALSE. |
optim.fun |
optimiser function: one of |
nstage |
number of stages in the SCV bandwidth selector (1 or 2) |
plot |
flag to display plot of SCV(h) vs h (1-d only). Default is FALSE. |
hscv
is the univariate SCV
selector of Jones, Marron & Park (1991). Hscv
is a
multivariate generalisation of this, see Duong & Hazelton (2005).
Use Hscv
for unconstrained bandwidth matrices and Hscv.diag
for diagonal bandwidth matrices.
The default pilot is "samse"
for d=2, r=0, and
"dscalar"
otherwise. For SAMSE pilot bandwidths, see Duong &
Hazelton (2005). Unconstrained and higher order derivative pilot
bandwidths are from Chacon & Duong (2011).
For d=1, the selector hscv
is not always stable for large
sample sizes with binning.
Examine the plot from hscv(, plot=TRUE)
to
determine the appropriate smoothness of the SCV function. Any
non-smoothness is due to the discretised nature of binned estimation.
For details about the advanced options for binned, Hstart, optim.fun
,
see Hpi
.
SCV bandwidth. If amise=TRUE
then the minimal scaled SCV value is returned too.
Chacon, J.E. & Duong, T. (2011) Unconstrained pilot selectors for smoothed cross validation. Australian & New Zealand Journal of Statistics, 53, 331-351.
Duong, T. & Hazelton, M.L. (2005) Cross-validation bandwidth matrices for multivariate kernel density estimation. Scandinavian Journal of Statistics, 32, 485-506.
Jones, M.C., Marron, J.S. & Park, B.U. (1991) A simple root
bandwidth selector. Annals of Statistics, 19, 1919-1932.
data(unicef) Hscv(unicef) hscv(unicef[,1])
data(unicef) Hscv(unicef) hscv(unicef[,1])
The global errors ISE (Integrated Squared Error), MISE (Mean Integrated Squared Error) and the AMISE (Asymptotic Mean Integrated Squared Error) for 1- to 6-dimensional data. Normal mixture densities have closed form expressions for the MISE and AMISE. So in these cases, we can numerically minimise these criteria to find MISE- and AMISE-optimal matrices.
Hamise.mixt(mus, Sigmas, props, samp, Hstart, deriv.order=0) Hmise.mixt(mus, Sigmas, props, samp, Hstart, deriv.order=0) Hamise.mixt.diag(mus, Sigmas, props, samp, Hstart, deriv.order=0) Hmise.mixt.diag(mus, Sigmas, props, samp, Hstart, deriv.order=0) hamise.mixt(mus, sigmas, props, samp, hstart, deriv.order=0) hmise.mixt(mus, sigmas, props, samp, hstart, deriv.order=0) amise.mixt(H, mus, Sigmas, props, samp, h, sigmas, deriv.order=0) ise.mixt(x, H, mus, Sigmas, props, h, sigmas, deriv.order=0, binned=FALSE, bgridsize) mise.mixt(H, mus, Sigmas, props, samp, h, sigmas, deriv.order=0)
Hamise.mixt(mus, Sigmas, props, samp, Hstart, deriv.order=0) Hmise.mixt(mus, Sigmas, props, samp, Hstart, deriv.order=0) Hamise.mixt.diag(mus, Sigmas, props, samp, Hstart, deriv.order=0) Hmise.mixt.diag(mus, Sigmas, props, samp, Hstart, deriv.order=0) hamise.mixt(mus, sigmas, props, samp, hstart, deriv.order=0) hmise.mixt(mus, sigmas, props, samp, hstart, deriv.order=0) amise.mixt(H, mus, Sigmas, props, samp, h, sigmas, deriv.order=0) ise.mixt(x, H, mus, Sigmas, props, h, sigmas, deriv.order=0, binned=FALSE, bgridsize) mise.mixt(H, mus, Sigmas, props, samp, h, sigmas, deriv.order=0)
mus |
(stacked) matrix of mean vectors (>1-d), vector of means (1-d) |
Sigmas , sigmas
|
(stacked) matrix of variance matrices (>1-d), vector of standard deviations (1-d) |
props |
vector of mixing proportions |
samp |
sample size |
Hstart , hstart
|
initial bandwidth (matrix), used in numerical optimisation |
deriv.order |
derivative order |
x |
matrix of data values |
H , h
|
bandwidth (matrix) |
binned |
flag for binned kernel estimation. Default is FALSE. |
bgridsize |
vector of binning grid sizes |
ISE is a random variable that depends on the data
x
. MISE and AMISE are non-random and don't
depend on the data. For normal mixture densities, ISE, MISE and AMISE
have exact formulas for all dimensions.
MISE- or AMISE-optimal bandwidth matrix. ISE, MISE or AMISE value.
Chacon J.E., Duong, T. & Wand, M.P. (2011). Asymptotics for general multivariate kernel density derivative estimators. Statistica Sinica, 21, 807-840.
x <- rmvnorm.mixt(100) Hamise.mixt(samp=nrow(x), mus=rep(0,2), Sigmas=var(x), props=1, deriv.order=1)
x <- rmvnorm.mixt(100) Hamise.mixt(samp=nrow(x), mus=rep(0,2), Sigmas=var(x), props=1, deriv.order=1)
Kernel cumulative distribution/survival function estimate for 1- to 3-dimensional data.
kcde(x, H, h, gridsize, gridtype, xmin, xmax, supp=3.7, eval.points, binned, bgridsize, positive=FALSE, adj.positive, w, verbose=FALSE, tail.flag="lower.tail") Hpi.kcde(x, nstage=2, pilot, Hstart, binned, bgridsize, amise=FALSE, verbose=FALSE, optim.fun="optim", pre=TRUE) Hpi.diag.kcde(x, nstage=2, pilot, Hstart, binned, bgridsize, amise=FALSE, verbose=FALSE, optim.fun="optim", pre=TRUE) hpi.kcde(x, nstage=2, binned, amise=FALSE) ## S3 method for class 'kcde' predict(object, ..., x)
kcde(x, H, h, gridsize, gridtype, xmin, xmax, supp=3.7, eval.points, binned, bgridsize, positive=FALSE, adj.positive, w, verbose=FALSE, tail.flag="lower.tail") Hpi.kcde(x, nstage=2, pilot, Hstart, binned, bgridsize, amise=FALSE, verbose=FALSE, optim.fun="optim", pre=TRUE) Hpi.diag.kcde(x, nstage=2, pilot, Hstart, binned, bgridsize, amise=FALSE, verbose=FALSE, optim.fun="optim", pre=TRUE) hpi.kcde(x, nstage=2, binned, amise=FALSE) ## S3 method for class 'kcde' predict(object, ..., x)
x |
matrix of data values |
H , h
|
bandwidth matrix/scalar bandwidth. If these are missing, then
|
gridsize |
vector of number of grid points |
gridtype |
not yet implemented |
xmin , xmax
|
vector of minimum/maximum values for grid |
supp |
effective support for standard normal |
eval.points |
vector or matrix of points at which estimate is evaluated |
binned |
flag for binned estimation. Default is FALSE. |
bgridsize |
vector of binning grid sizes |
positive |
flag if 1-d data are positive. Default is FALSE. |
adj.positive |
adjustment applied to positive 1-d data |
w |
not yet implemented |
verbose |
flag to print out progress information. Default is FALSE. |
tail.flag |
"lower.tail" = cumulative distribution, "upper.tail" = survival function |
nstage |
number of stages in the plug-in bandwidth selector (1 or 2) |
pilot |
"dscalar" = single pilot bandwidth (default for
|
Hstart |
initial bandwidth matrix, used in numerical optimisation |
amise |
flag to return the minimal scaled PI value |
optim.fun |
optimiser function: one of |
pre |
flag for pre-scaling data. Default is TRUE. |
object |
object of class |
... |
other parameters |
If tail.flag="lower.tail"
then the cumulative distribution
function is estimated, otherwise
if
tail.flag="upper.tail"
, it is the survival function
. For
,
.
If the bandwidth H
is missing in kcde
, then
the default bandwidth is the plug-in selector
Hpi.kcde
. Likewise for missing h
.
No pre-scaling/pre-sphering is used since the Hpi.kcde
is not
invariant to translation/dilation.
The effective support, binning, grid size, grid range, positive, optimisation function
parameters are the same as kde
.
A kernel cumulative distribution estimate is an object of class
kcde
which is a list with fields:
x |
data points - same as input |
eval.points |
vector or list of points at which the estimate is evaluated |
estimate |
cumulative distribution/survival function estimate at
|
h |
scalar bandwidth (1-d only) |
H |
bandwidth matrix |
gridtype |
"linear" |
gridded |
flag for estimation on a grid |
binned |
flag for binned estimation |
names |
variable names |
w |
vector of weights |
tail |
"lower.tail"=cumulative distribution, "upper.tail"=survival function |
Duong, T. (2016) Non-parametric smoothed estimation of multivariate cumulative distribution and survival functions, and receiver operating characteristic curves. Journal of the Korean Statistical Society, 45, 33-50.
data(iris) Fhat <- kcde(iris[,1:2]) predict(Fhat, x=as.matrix(iris[,1:2])) ## See other examples in ? plot.kcde
data(iris) Fhat <- kcde(iris[,1:2]) predict(Fhat, x=as.matrix(iris[,1:2])) ## See other examples in ? plot.kcde
Kernel copula and copula density estimator for 2-dimensional data.
kcopula(x, H, hs, gridsize, gridtype, xmin, xmax, supp=3.7, eval.points, binned, bgridsize, w, marginal="kernel", verbose=FALSE) kcopula.de(x, H, gridsize, gridtype, xmin, xmax, supp=3.7, eval.points, binned, bgridsize, w, compute.cont=TRUE, approx.cont=TRUE, marginal="kernel", boundary.supp, boundary.kernel="beta", verbose=FALSE)
kcopula(x, H, hs, gridsize, gridtype, xmin, xmax, supp=3.7, eval.points, binned, bgridsize, w, marginal="kernel", verbose=FALSE) kcopula.de(x, H, gridsize, gridtype, xmin, xmax, supp=3.7, eval.points, binned, bgridsize, w, compute.cont=TRUE, approx.cont=TRUE, marginal="kernel", boundary.supp, boundary.kernel="beta", verbose=FALSE)
x |
matrix of data values |
H , hs
|
bandwidth matrix. If these are missing, |
gridsize |
vector of number of grid points |
gridtype |
not yet implemented |
xmin , xmax
|
vector of minimum/maximum values for grid |
supp |
effective support for standard normal |
eval.points |
matrix of points at which estimate is evaluated |
binned |
flag for binned estimation |
bgridsize |
vector of binning grid sizes |
w |
vector of weights. Default is a vector of all ones. |
marginal |
"kernel" = kernel cdf or "empirical" = empirical cdf to calculate pseudo-uniform values. Default is "kernel". |
compute.cont |
flag for computing 1% to 99% probability contour levels. Default is TRUE. |
approx.cont |
flag for computing approximate probability contour levels. Default is TRUE. |
boundary.supp |
effective support for boundary region |
boundary.kernel |
"beta" = beta boundary kernel, "linear" = linear boundary kernel |
verbose |
flag to print out progress information. Default is FALSE. |
For kernel copula estimates, a transformation approach is used to
account for the boundary effects. If H
is missing, the default
is Hpi.kcde
; if hs
are missing, the default is
hpi.kcde
.
For kernel copula density estimates, for those points which are in
the interior region, the usual kernel density estimator
(kde
) is used. For those points in the boundary region,
a product beta kernel based on the boundary corrected univariate beta
kernel of Chen (1999) is used (kde.boundary
). If H
is missing, the default is Hpi.kcde
; if hs
are missing,
the default is hpi
.
The effective support, binning, grid size, grid range parameters are
the same as for kde
.
A kernel copula estimate, output from kcopula
, is an object of
class kcopula
. A kernel copula density estimate, output from
kcopula.de
, is an object of class kde
. These two classes
of objects have the same fields as kcde
and kde
objects
respectively, except for
x |
pseudo-uniform data points |
x.orig |
data points - same as input |
marginal |
marginal function used to compute pseudo-uniform data |
boundary |
flag for data points in the boundary region
( |
Duong, T. (2014) Optimal data-based smoothing for non-parametric estimation of copula functions and their densities. Submitted.
Chen, S.X. (1999). Beta kernel estimator for density functions. Computational Statistics & Data Analysis, 31, 131–145.
data(fgl, package="MASS") x <- fgl[,c("RI", "Na")] Chat <- kcopula(x=x) plot(Chat, display="persp", border=1) plot(Chat, display="filled.contour", lwd=1)
data(fgl, package="MASS") x <- fgl[,c("RI", "Na")] Chat <- kcopula(x=x) plot(Chat, display="persp", border=1) plot(Chat, display="filled.contour", lwd=1)
Kernel discriminant analysis (kernel classification) for 1- to d-dimensional data.
kda(x, x.group, Hs, hs, prior.prob=NULL, gridsize, xmin, xmax, supp=3.7, eval.points, binned, bgridsize, w, compute.cont=TRUE, approx.cont=TRUE, kde.flag=TRUE) Hkda(x, x.group, Hstart, bw="plugin", ...) Hkda.diag(x, x.group, bw="plugin", ...) hkda(x, x.group, bw="plugin", ...) ## S3 method for class 'kda' predict(object, ..., x) compare(x.group, est.group, by.group=FALSE) compare.kda.cv(x, x.group, bw="plugin", prior.prob=NULL, Hstart, by.group=FALSE, verbose=FALSE, recompute=FALSE, ...) compare.kda.diag.cv(x, x.group, bw="plugin", prior.prob=NULL, by.group=FALSE, verbose=FALSE, recompute=FALSE, ...)
kda(x, x.group, Hs, hs, prior.prob=NULL, gridsize, xmin, xmax, supp=3.7, eval.points, binned, bgridsize, w, compute.cont=TRUE, approx.cont=TRUE, kde.flag=TRUE) Hkda(x, x.group, Hstart, bw="plugin", ...) Hkda.diag(x, x.group, bw="plugin", ...) hkda(x, x.group, bw="plugin", ...) ## S3 method for class 'kda' predict(object, ..., x) compare(x.group, est.group, by.group=FALSE) compare.kda.cv(x, x.group, bw="plugin", prior.prob=NULL, Hstart, by.group=FALSE, verbose=FALSE, recompute=FALSE, ...) compare.kda.diag.cv(x, x.group, bw="plugin", prior.prob=NULL, by.group=FALSE, verbose=FALSE, recompute=FALSE, ...)
x |
matrix of training data values |
x.group |
vector of group labels for training data |
Hs , hs
|
(stacked) matrix of bandwidth matrices/vector of scalar
bandwidths. If these are missing, |
prior.prob |
vector of prior probabilities |
gridsize |
vector of grid sizes |
xmin , xmax
|
vector of minimum/maximum values for grid |
supp |
effective support for standard normal |
eval.points |
vector or matrix of points at which estimate is evaluated |
binned |
flag for binned estimation |
bgridsize |
vector of binning grid sizes |
w |
vector of weights. Not yet implemented. |
compute.cont |
flag for computing 1% to 99% probability contour levels. Default is TRUE. |
approx.cont |
flag for computing approximate probability contour levels. Default is TRUE. |
kde.flag |
flag for computing KDE on grid. Default is TRUE. |
object |
object of class |
bw |
bandwidth: "plugin" = plug-in, "lscv" = LSCV, "scv" = SCV |
Hstart |
(stacked) matrix of initial bandwidth matrices, used in numerical optimisation |
est.group |
vector of estimated group labels |
by.group |
flag to give results also within each group |
verbose |
flag for printing progress information. Default is FALSE. |
recompute |
flag for recomputing the bandwidth matrix after excluding the i-th data item |
... |
other optional parameters for bandwidth selection, see
|
If the bandwidths Hs
are missing from kda
, then the
default bandwidths are the plug-in selectors Hkda(, bw="plugin")
.
Likewise for missing hs
. Valid options for bw
are "plugin"
, "lscv"
and "scv"
which in turn call
Hpi
, Hlscv
and Hscv
.
The effective support, binning, grid size, grid range, positive
parameters are the same as kde
.
If prior probabilities are known then set prior.prob
to these.
Otherwise prior.prob=NULL
uses the sample
proportions as estimates of the prior probabilities.
For ks 1.8.11,
kda.kde
has been subsumed
into kda
, so all prior calls to kda.kde
can be replaced
by kda
. To reproduce the previous behaviour of kda
, the
command is kda(, kde.flag=FALSE)
.
–For kde.flag=TRUE
, a kernel discriminant analysis is an object of class kda
which is a list with fields
x |
list of data points, one for each group label |
estimate |
list of density estimates at |
eval.points |
vector or list of points that the estimate is evaluated at, one for each group label |
h |
vector of bandwidths (1-d only) |
H |
stacked matrix of bandwidth matrices or vector of bandwidths |
gridded |
flag for estimation on a grid |
binned |
flag for binned estimation |
w |
vector of weights |
prior.prob |
vector of prior probabilities |
x.group |
vector of group labels - same as input |
x.group.estimate |
vector of estimated group labels. If the test data
|
For kde.flag=FALSE
, which is always the case for ,
then only the vector of estimated group labels is returned.
–The result from Hkda
and Hkda.diag
is a stacked matrix
of bandwidth matrices, one for each training data group. The result
from hkda
is a vector of bandwidths, one for each training group.
–The compare
functions create a comparison between the true
group labels x.group
and the estimated ones.
It returns a list with fields
cross |
cross-classification table with the rows indicating the true group and the columns the estimated group |
error |
misclassification rate (MR) |
In the case where the test data are independent of the
training data, compare
computes MR = (number of points wrongly
classified)/(total number of points). In the case where the test data
are not independent e.g.
we are classifying the training data set itself, then the cross
validated estimate of MR is more appropriate. These
are implemented as compare.kda.cv
(unconstrained bandwidth
selectors) and compare.kda.diag.cv
(for diagonal bandwidth
selectors). These functions are only available for d > 1.
If by.group=FALSE
then only the total MR rate is given. If it
is set to TRUE, then the MR rates for each class are also given
(estimated number in group divided by true number).
Simonoff, J. S. (1996) Smoothing Methods in Statistics. Springer-Verlag. New York
set.seed(8192) x <- c(rnorm.mixt(n=100, mus=1), rnorm.mixt(n=100, mus=-1)) x.gr <- rep(c(1,2), times=c(100,100)) y <- c(rnorm.mixt(n=100, mus=1), rnorm.mixt(n=100, mus=-1)) y.gr <- rep(c(1,2), times=c(100,100)) kda.gr <- kda(x, x.gr) y.gr.est <- predict(kda.gr, x=y) compare(y.gr, y.gr.est) ## See other examples in ? plot.kda
set.seed(8192) x <- c(rnorm.mixt(n=100, mus=1), rnorm.mixt(n=100, mus=-1)) x.gr <- rep(c(1,2), times=c(100,100)) y <- c(rnorm.mixt(n=100, mus=1), rnorm.mixt(n=100, mus=-1)) y.gr <- rep(c(1,2), times=c(100,100)) kda.gr <- kda(x, x.gr) y.gr.est <- predict(kda.gr, x=y) compare(y.gr, y.gr.est) ## See other examples in ? plot.kda
Deconvolution kernel density derivative estimate for 1- to 6-dimensional data.
kdcde(x, H, h, Sigma, sigma, reg, bgridsize, gridsize, binned, verbose=FALSE, ...) dckde(...)
kdcde(x, H, h, Sigma, sigma, reg, bgridsize, gridsize, binned, verbose=FALSE, ...) dckde(...)
x |
matrix of data values |
H , h
|
bandwidth matrix/scalar bandwidth. If these are missing, |
Sigma , sigma
|
error variance matrix |
reg |
regularisation parameter |
gridsize |
vector of number of grid points |
binned |
flag for binned estimation |
bgridsize |
vector of binning grid sizes |
verbose |
flag to print out progress information. Default is FALSE. |
... |
other parameters to |
A weighted kernel density estimate is utilised to perform the
deconvolution. The weights w
are the solution to a
quadratic programming problem, and then input into kde(,w=w)
.
This weighted estimate also requires an estimate of the error
variance matrix from repeated observations, and of the regularisation
parameter. If the latter is missing, it is calculated internally using
a 5-fold cross validation method. See Hazelton & Turlach (2009).
dckde
is an alias for kdcde
.
If the bandwidth H
is missing from kde
, then
the default bandwidth is the plug-in selector
Hpi
. Likewise for missing h
.
The effective support, binning, grid size, grid range, positive
parameters are the same as kde
.
A deconvolution kernel density derivative estimate is an object of class
kde
which is a list with fields:
x |
data points - same as input |
eval.points |
vector or list of points at which the estimate is evaluated |
estimate |
density estimate at |
h |
scalar bandwidth (1-d only) |
H |
bandwidth matrix |
gridtype |
"linear" |
gridded |
flag for estimation on a grid |
binned |
flag for binned estimation |
names |
variable names |
w |
vector of weights |
cont |
vector of probability contour levels |
Hazelton, M. L. & Turlach, B. A. (2009), Nonparametric density deconvolution by weighted kernel density estimators, Statistics and Computing, 19, 217-228.
data(air) air <- air[, c("date", "time", "co2", "pm10")] air2 <- reshape(air, idvar="date", timevar="time", direction="wide") air <- as.matrix(na.omit(air2[,c("co2.20:00", "pm10.20:00")])) Sigma.air <- diag(c(var(air2[,"co2.19:00"] - air2["co2.21:00"], na.rm=TRUE), var(air2[,"pm10.19:00"] - air2[,"pm10.21:00"], na.rm=TRUE))) fhat.air.dec <- kdcde(x=air, Sigma=Sigma.air, reg=0.00021, verbose=TRUE) plot(fhat.air.dec, drawlabels=FALSE, display="filled.contour", lwd=1)
data(air) air <- air[, c("date", "time", "co2", "pm10")] air2 <- reshape(air, idvar="date", timevar="time", direction="wide") air <- as.matrix(na.omit(air2[,c("co2.20:00", "pm10.20:00")])) Sigma.air <- diag(c(var(air2[,"co2.19:00"] - air2["co2.21:00"], na.rm=TRUE), var(air2[,"pm10.19:00"] - air2[,"pm10.21:00"], na.rm=TRUE))) fhat.air.dec <- kdcde(x=air, Sigma=Sigma.air, reg=0.00021, verbose=TRUE) plot(fhat.air.dec, drawlabels=FALSE, display="filled.contour", lwd=1)
Kernel density derivative estimate for 1- to 6-dimensional data.
kdde(x, H, h, deriv.order=0, gridsize, gridtype, xmin, xmax, supp=3.7, eval.points, binned, bgridsize, positive=FALSE, adj.positive, w, deriv.vec=TRUE, verbose=FALSE) kcurv(fhat, compute.cont=TRUE) ## S3 method for class 'kdde' predict(object, ..., x)
kdde(x, H, h, deriv.order=0, gridsize, gridtype, xmin, xmax, supp=3.7, eval.points, binned, bgridsize, positive=FALSE, adj.positive, w, deriv.vec=TRUE, verbose=FALSE) kcurv(fhat, compute.cont=TRUE) ## S3 method for class 'kdde' predict(object, ..., x)
x |
matrix of data values |
H , h
|
bandwidth matrix/scalar bandwidth. If these are missing, |
deriv.order |
derivative order (scalar) |
gridsize |
vector of number of grid points |
gridtype |
not yet implemented |
xmin , xmax
|
vector of minimum/maximum values for grid |
supp |
effective support for standard normal |
eval.points |
vector or matrix of points at which estimate is evaluated |
binned |
flag for binned estimation |
bgridsize |
vector of binning grid sizes |
positive |
flag if data are positive (1-d, 2-d). Default is FALSE. |
adj.positive |
adjustment applied to positive 1-d data |
w |
vector of weights. Default is a vector of all ones. |
deriv.vec |
flag to compute all derivatives in vectorised derivative. Default is TRUE. If FALSE then only the unique derivatives are computed. |
verbose |
flag to print out progress information. Default is FALSE. |
compute.cont |
flag for computing 1% to 99% probability contour levels. Default is TRUE. |
fhat |
object of class |
object |
object of class |
... |
other parameters |
For each partial derivative, for grid estimation, the estimate is a
list whose elements
correspond to the partial derivative indices in the rows of deriv.ind
.
For points estimation, the estimate is a matrix whose columns correspond to
the rows of deriv.ind
.
If the bandwidth H
is missing from kdde
, then
the default bandwidth is the plug-in selector
Hpi
. Likewise for missing h
.
The effective support, binning, grid size, grid range, positive
parameters are the same as kde
.
The summary curvature is computed by kcurv
, i.e.
where is the kernel Hessian matrix
estimate. So
calculates the absolute value of
the determinant of the Hessian matrix and whose sign is the opposite of
the negative definiteness indicator.
A kernel density derivative estimate is an object of class
kdde
which is a list with fields:
x |
data points - same as input |
eval.points |
vector or list of points at which the estimate is evaluated |
estimate |
density derivative estimate at |
h |
scalar bandwidth (1-d only) |
H |
bandwidth matrix |
gridtype |
"linear" |
gridded |
flag for estimation on a grid |
binned |
flag for binned estimation |
names |
variable names |
w |
vector of weights |
deriv.order |
derivative order (scalar) |
deriv.ind |
martix where each row is a vector of partial derivative indices |
set.seed(8192) x <- rmvnorm.mixt(1000, mus=c(0,0), Sigmas=invvech(c(1,0.8,1))) fhat <- kdde(x=x, deriv.order=1) ## gradient [df/dx, df/dy] predict(fhat, x=x[1:5,]) ## See other examples in ? plot.kdde
set.seed(8192) x <- rmvnorm.mixt(1000, mus=c(0,0), Sigmas=invvech(c(1,0.8,1))) fhat <- kdde(x=x, deriv.order=1) ## gradient [df/dx, df/dy] predict(fhat, x=x[1:5,]) ## See other examples in ? plot.kdde
Kernel density estimate for 1- to 6-dimensional data.
kde(x, H, h, gridsize, gridtype, xmin, xmax, supp=3.7, eval.points, binned, bgridsize, positive=FALSE, adj.positive, w, compute.cont=TRUE, approx.cont=TRUE, unit.interval=FALSE, density=FALSE, verbose=FALSE) ## S3 method for class 'kde' predict(object, ..., x, zero.flag=TRUE)
kde(x, H, h, gridsize, gridtype, xmin, xmax, supp=3.7, eval.points, binned, bgridsize, positive=FALSE, adj.positive, w, compute.cont=TRUE, approx.cont=TRUE, unit.interval=FALSE, density=FALSE, verbose=FALSE) ## S3 method for class 'kde' predict(object, ..., x, zero.flag=TRUE)
x |
matrix of data values |
H , h
|
bandwidth matrix/scalar bandwidth. If these are missing, |
gridsize |
vector of number of grid points |
gridtype |
not yet implemented |
xmin , xmax
|
vector of minimum/maximum values for grid |
supp |
effective support for standard normal |
eval.points |
vector or matrix of points at which estimate is evaluated |
binned |
flag for binned estimation. |
bgridsize |
vector of binning grid sizes |
positive |
flag if data are positive (1-d, 2-d). Default is FALSE. |
adj.positive |
adjustment applied to positive 1-d data |
w |
vector of weights. Default is a vector of all ones. |
compute.cont |
flag for computing 1% to 99% probability contour levels. Default is TRUE. |
approx.cont |
flag for computing approximate probability contour levels. Default is TRUE. |
unit.interval |
flag for computing log transformation KDE on 1-d data bounded on unit interval [0,1]. Default is FALSE. |
density |
flag if density estimate values are forced to be non-negative function. Default is FALSE. |
verbose |
flag to print out progress information. Default is FALSE. |
object |
object of class |
zero.flag |
deprecated (retained for backwards compatibilty) |
... |
other parameters |
For d=1, if h
is missing, the default bandwidth is hpi
.
For d>1, if H
is missing, the default is Hpi
.
For d=1, if positive=TRUE
then x
is transformed to
log(x+adj.positive)
where the default adj.positive
is
the minimum of x
. This is known as a log transformation density
estimate. If unit.interval=TRUE
then x
is transformed to
qnorm(x)
. See kde.boundary
for boundary kernel density estimates, as these tend to be more robust than transformation density estimates.
For d=1, 2, 3, and if eval.points
is not specified, then the
density estimate is computed over a grid
defined by gridsize
(if binned=FALSE
) or
by bgridsize
(if binned=TRUE
). This form is suitable for
visualisation in conjunction with the plot
method.
For d=4, 5, 6, and if eval.points
is not specified, then the
density estimate is computed over a grid defined by gridsize
.
If eval.points
is specified, as a vector (d=1) or
as a matrix (d=2, 3, 4), then the density estimate is computed at
eval.points
. This form is suitable for numerical summaries
(e.g. maximum likelihood), and is not compatible with the plot
method. Despite that the density estimate is returned only at
eval.points
, by default, a binned gridded estimate is
calculated first and then the density estimate at eval.points
is computed using the predict
method. If this default intermediate
binned grid estimate is not required, then set binned=FALSE
to
compute directly the exact density estimate at eval.points
.
Binned kernel estimation is an approximation to the exact kernel
estimation and is available for d=1, 2, 3, 4. This makes
kernel estimators feasible for large samples. The default value of the
binning flag binned
is n>1 (d=1), n>500 (d=2), n>1000 (d>=3).
Some times binned estimation leads to negative density values: if non-negative
values are required, then set density=TRUE
.
The default bgridsize,gridsize
are d=1: 401; d=2: rep(151, 2); d=3:
rep(51, 3); d=4: rep(21, 4).
The effective support for a normal kernel is where
all values outside [-supp,supp]^d
are zero.
The default xmin
is min(x)-Hmax*supp
and xmax
is max(x)+Hmax*supp
where Hmax
is the maximum of the
diagonal elements of H
. The grid produced is the outer
product of c(xmin[1], xmax[1])
, ..., c(xmin[d], xmax[d])
.
For ks 1.14.0, when
binned=TRUE
and xmin,xmax
are not missing, the data values x
are clipped to the estimation grid
delimited by xmin,xmax
to prevent potential memory leaks.
A kernel density estimate is an object of class kde
which is a
list with fields:
x |
data points - same as input |
eval.points |
vector or list of points at which the estimate is evaluated |
estimate |
density estimate at |
h |
scalar bandwidth (1-d only) |
H |
bandwidth matrix |
gridtype |
"linear" |
gridded |
flag for estimation on a grid |
binned |
flag for binned estimation |
names |
variable names |
w |
vector of weights |
cont |
vector of probability contour levels |
## unit interval data set.seed(8192) fhat <- kde(runif(10000,0,1), unit.interval=TRUE) plot(fhat, ylim=c(0,1.2)) ## positive data data(worldbank) wb <- as.matrix(na.omit(worldbank[,2:3])) wb[,2] <- wb[,2]/1000 fhat <- kde(x=wb) fhat.trans <- kde(x=wb, adj.positive=c(0,0), positive=TRUE) plot(fhat, col=1, xlim=c(0,20), ylim=c(0,80)) plot(fhat.trans, add=TRUE, col=2) rect(0,0,100,100, lty=2) ## large data on non-default grid ## 151 x 151 grid = [-5,-4.933,..,5] x [-5,-4.933,..,5] set.seed(8192) x <- rmvnorm.mixt(10000, mus=c(0,0), Sigmas=invvech(c(1,0.8,1))) fhat <- kde(x=x, compute.cont=TRUE, xmin=c(-5,-5), xmax=c(5,5), bgridsize=c(151,151)) plot(fhat) ## See other examples in ? plot.kde
## unit interval data set.seed(8192) fhat <- kde(runif(10000,0,1), unit.interval=TRUE) plot(fhat, ylim=c(0,1.2)) ## positive data data(worldbank) wb <- as.matrix(na.omit(worldbank[,2:3])) wb[,2] <- wb[,2]/1000 fhat <- kde(x=wb) fhat.trans <- kde(x=wb, adj.positive=c(0,0), positive=TRUE) plot(fhat, col=1, xlim=c(0,20), ylim=c(0,80)) plot(fhat.trans, add=TRUE, col=2) rect(0,0,100,100, lty=2) ## large data on non-default grid ## 151 x 151 grid = [-5,-4.933,..,5] x [-5,-4.933,..,5] set.seed(8192) x <- rmvnorm.mixt(10000, mus=c(0,0), Sigmas=invvech(c(1,0.8,1))) fhat <- kde(x=x, compute.cont=TRUE, xmin=c(-5,-5), xmax=c(5,5), bgridsize=c(151,151)) plot(fhat) ## See other examples in ? plot.kde
Kernel density estimate for bounded 1- to 3-dimensional data.
kde.boundary(x, H, h, gridsize, gridtype, xmin, xmax, supp=3.7, eval.points, binned=FALSE, bgridsize, w, compute.cont=TRUE, approx.cont=TRUE, boundary.supp, boundary.kernel="beta", verbose=FALSE)
kde.boundary(x, H, h, gridsize, gridtype, xmin, xmax, supp=3.7, eval.points, binned=FALSE, bgridsize, w, compute.cont=TRUE, approx.cont=TRUE, boundary.supp, boundary.kernel="beta", verbose=FALSE)
x |
matrix of data values |
H , h
|
bandwidth matrix/scalar bandwidth. If these are missing, |
gridsize |
vector of number of grid points |
gridtype |
not yet implemented |
xmin , xmax
|
vector of minimum/maximum values for grid |
supp |
effective support for standard normal |
eval.points |
vector or matrix of points at which estimate is evaluated |
binned |
flag for binned estimation. |
bgridsize |
vector of binning grid sizes |
w |
vector of weights. Default is a vector of all ones. |
compute.cont |
flag for computing 1% to 99% probability contour levels. Default is TRUE. |
approx.cont |
flag for computing approximate probability contour levels. Default is TRUE. |
boundary.supp |
effective support for boundary region |
boundary.kernel |
"beta" = beta boundary kernel, "linear" = linear boundary kernel |
verbose |
flag to print out progress information. Default is FALSE. |
There are two forms of density estimates which are suitable for
bounded data, based on the modifying the kernel function.
For boundary.kernel="beta"
, the 2nd
form of the Beta boundary kernel of Chen (1999) is employed. It is suited for
rectangular data boundaries.
For boundary.kernel="linear"
, the linear boundary kernel of
Hazelton & Marshall (2009) is employed. It is suited for arbitrarily
shaped data boundaries, though it
is currently only implemented for rectangular boundaries.
A kernel density estimate for bounded data is an object of class kde
.
Chen, S. X. (1999) Beta kernel estimators for density functions. Computational Statistics and Data Analysis, 31, 131-145.
Hazelton, M. L. & Marshall, J. C. (2009) Linear boundary kernels for bivariate density estimation. Statistics and Probability Letters, 79, 999-1003.
data(worldbank) wb <- as.matrix(na.omit(worldbank[,c("internet", "ag.value")])) fhat <- kde(x=wb) fhat.beta <- kde.boundary(x=wb, xmin=c(0,0), xmax=c(100,100), boundary.kernel="beta") fhat.LB <- kde.boundary(x=wb, xmin=c(0,0), xmax=c(100,100), boundary.kernel="linear") plot(fhat, col=1, xlim=c(0,100), ylim=c(0,100)) plot(fhat.beta, add=TRUE, col=2) rect(0,0,100,100, lty=2) plot(fhat, col=1, xlim=c(0,100), ylim=c(0,100)) plot(fhat.LB, add=TRUE, col=3) rect(0,0,100,100, lty=2)
data(worldbank) wb <- as.matrix(na.omit(worldbank[,c("internet", "ag.value")])) fhat <- kde(x=wb) fhat.beta <- kde.boundary(x=wb, xmin=c(0,0), xmax=c(100,100), boundary.kernel="beta") fhat.LB <- kde.boundary(x=wb, xmin=c(0,0), xmax=c(100,100), boundary.kernel="linear") plot(fhat, col=1, xlim=c(0,100), ylim=c(0,100)) plot(fhat.beta, add=TRUE, col=2) rect(0,0,100,100, lty=2) plot(fhat, col=1, xlim=c(0,100), ylim=c(0,100)) plot(fhat.LB, add=TRUE, col=3) rect(0,0,100,100, lty=2)
Kernel density based local two-sample comparison test for 1- to 6-dimensional data.
kde.local.test(x1, x2, H1, H2, h1, h2, fhat1, fhat2, gridsize, binned, bgridsize, verbose=FALSE, supp=3.7, mean.adj=FALSE, signif.level=0.05, min.ESS, xmin, xmax)
kde.local.test(x1, x2, H1, H2, h1, h2, fhat1, fhat2, gridsize, binned, bgridsize, verbose=FALSE, supp=3.7, mean.adj=FALSE, signif.level=0.05, min.ESS, xmin, xmax)
x1 , x2
|
vector/matrix of data values |
H1 , H2 , h1 , h2
|
bandwidth matrices/scalar bandwidths. If these are missing, |
fhat1 , fhat2
|
objects of class |
binned |
flag for binned estimation |
gridsize |
vector of grid sizes |
bgridsize |
vector of binning grid sizes |
verbose |
flag to print out progress information. Default is FALSE. |
supp |
effective support for normal kernel |
mean.adj |
flag to compute second order correction for mean value of critical sampling distribution. Default is FALSE. Currently implemented for d<=2 only. |
signif.level |
significance level. Default is 0.05. |
min.ESS |
minimum effective sample size. See below for details. |
xmin , xmax
|
vector of minimum/maximum values for grid |
The null hypothesis is where
are the respective density functions. The measure of discrepancy is
.
Duong (2013) shows that the test statistic obtained, by substituting the
KDEs for the true densities, has a null
distribution which is asymptotically chi-squared with 1 d.f.
The required input is either x1,x2
and H1,H2
, or
fhat1,fhat2
, i.e. the data values and bandwidths or objects of class
kde
. In the former case, the kde
objects are created.
If the H1,H2
are missing then the default are the plug-in
selectors Hpi
. Likewise for missing h1,h2
.
The mean.adj
flag determines whether the
second order correction to the mean value of the test statistic should be computed.
min.ESS
is borrowed from Godtliebsen et al. (2002)
to reduce spurious significant results in the tails, though by it is usually
not required for small to moderate sample sizes.
A kernel two-sample local significance is an object of class
kde.loctest
which is a list with fields:
fhat1 , fhat2
|
kernel density estimates, objects of class |
chisq |
chi squared test statistic |
pvalue |
matrix of local |
fhat.diff |
difference of KDEs |
mean.fhat.diff |
mean of the test statistic |
var.fhat.diff |
variance of the test statistic |
fhat.diff.pos |
binary matrix to indicate locally significant fhat1 > fhat2 |
fhat.diff.neg |
binary matrix to indicate locally significant fhat1 < fhat2 |
n1 , n2
|
sample sizes |
H1 , H2 , h1 , h2
|
bandwidth matrices/scalar bandwidths |
Duong, T. (2013) Local significant differences from non-parametric two-sample tests. Journal of Nonparametric Statistics, 25, 635-645.
Godtliebsen, F., Marron, J.S. & Chaudhuri, P. (2002) Significance in scale space for bivariate density estimation. Journal of Computational and Graphical Statistics, 11, 1-22.
data(crabs, package="MASS") x1 <- crabs[crabs$sp=="B", 4] x2 <- crabs[crabs$sp=="O", 4] loct <- kde.local.test(x1=x1, x2=x2) plot(loct, ylim=c(-0.08,0.12)) cols <- hcl.colors(palette="Dark2",2) plot(loct$fhat1, add=TRUE, col=cols[1]) plot(loct$fhat2, add=TRUE, col=cols[2]) ## see examples in ? plot.kde.loctest
data(crabs, package="MASS") x1 <- crabs[crabs$sp=="B", 4] x2 <- crabs[crabs$sp=="O", 4] loct <- kde.local.test(x1=x1, x2=x2) plot(loct, ylim=c(-0.08,0.12)) cols <- hcl.colors(palette="Dark2",2) plot(loct$fhat1, add=TRUE, col=cols[1]) plot(loct$fhat2, add=TRUE, col=cols[2]) ## see examples in ? plot.kde.loctest
Kernel density based global two-sample comparison test for 1- to 6-dimensional data.
kde.test(x1, x2, H1, H2, h1, h2, psi1, psi2, var.fhat1, var.fhat2, binned=FALSE, bgridsize, verbose=FALSE)
kde.test(x1, x2, H1, H2, h1, h2, psi1, psi2, var.fhat1, var.fhat2, binned=FALSE, bgridsize, verbose=FALSE)
x1 , x2
|
vector/matrix of data values |
H1 , H2 , h1 , h2
|
bandwidth matrices/scalar bandwidths. If these are
missing, |
psi1 , psi2
|
zero-th order kernel functional estimates |
var.fhat1 , var.fhat2
|
sample variance of KDE estimates evaluated at x1, x2 |
binned |
flag for binned estimation. Default is FALSE. |
bgridsize |
vector of binning grid sizes |
verbose |
flag to print out progress information. Default is FALSE. |
The null hypothesis is where
are the respective density functions. The measure of discrepancy is
the integrated squared error (ISE)
. If
we rewrite this as
where
,
then we can use kernel functional estimators. This test statistic has a null
distribution which is asymptotically normal, so no bootstrap
resampling is required to compute an approximate
-value.
If H1,H2
are missing then the plug-in selector Hpi.kfe
is automatically called by kde.test
to estimate the
functionals with kfe(, deriv.order=0)
. Likewise for missing
h1,h2
.
For ks 1.8.8,
kde.test(,binned=TRUE)
invokes binned
estimation for the computation of the bandwidth selectors, and not the
test statistic and -value.
A kernel two-sample global significance test is a list with fields:
Tstat |
T statistic |
zstat |
z statistic - normalised version of Tstat |
pvalue |
|
mean , var
|
mean and variance of null distribution |
var.fhat1 , var.fhat2
|
sample variances of KDE values evaluated at data points |
n1 , n2
|
sample sizes |
H1 , H2
|
bandwidth matrices |
psi1 , psi12 , psi21 , psi2
|
kernel functional estimates |
Duong, T., Goud, B. & Schauer, K. (2012) Closed-form density-based framework for automatic detection of cellular morphology changes. PNAS, 109, 8382-8387.
set.seed(8192) samp <- 1000 x <- rnorm.mixt(n=samp, mus=0, sigmas=1, props=1) y <- rnorm.mixt(n=samp, mus=0, sigmas=1, props=1) kde.test(x1=x, x2=y)$pvalue ## accept H0: f1=f2 data(crabs, package="MASS") x1 <- crabs[crabs$sp=="B", c(4,6)] x2 <- crabs[crabs$sp=="O", c(4,6)] kde.test(x1=x1, x2=x2)$pvalue ## reject H0: f1=f2
set.seed(8192) samp <- 1000 x <- rnorm.mixt(n=samp, mus=0, sigmas=1, props=1) y <- rnorm.mixt(n=samp, mus=0, sigmas=1, props=1) kde.test(x1=x, x2=y)$pvalue ## accept H0: f1=f2 data(crabs, package="MASS") x1 <- crabs[crabs$sp=="B", c(4,6)] x2 <- crabs[crabs$sp=="O", c(4,6)] kde.test(x1=x1, x2=x2)$pvalue ## reject H0: f1=f2
Truncated kernel density derivative estimate for 2-dimensional data.
kde.truncate(fhat, boundary) kdde.truncate(fhat, boundary)
kde.truncate(fhat, boundary) kdde.truncate(fhat, boundary)
fhat |
object of class |
boundary |
two column matrix delimiting the boundary for truncation |
A simple truncation is performed on the kernel estimator. All the
points in the estimation grid which are outside of the regions
delimited by boundary
are set to 0, and their probability
mass is distributed proportionally to the remaining density (derivative) values.
A truncated kernel density (derivative) estimate inherits the same object class as the input estimate.
data(worldbank) wb <- as.matrix(na.omit(worldbank[,c("internet", "ag.value")])) fhat <- kde(x=wb) rectb <- cbind(x=c(0,100,100,0,0), y=c(0,0,100,100,0)) fhat.b <- kde.truncate(fhat, boundary=rectb) plot(fhat, col=1, xlim=c(0,100), ylim=c(0,100)) plot(fhat.b, add=TRUE, col=4) rect(0,0,100,100, lty=2) library(oz) data(grevillea) wa.coast <- ozRegion(section=1) wa.polygon <- cbind(wa.coast$lines[[1]]$x, wa.coast$lines[[1]]$y) fhat1 <- kdde(x=grevillea, deriv.order=1) fhat1 <- kdde.truncate(fhat1, wa.polygon) oz(section=1, xlim=c(113,122), ylim=c(-36,-29)) plot(fhat1, add=TRUE, display="filled.contour")
data(worldbank) wb <- as.matrix(na.omit(worldbank[,c("internet", "ag.value")])) fhat <- kde(x=wb) rectb <- cbind(x=c(0,100,100,0,0), y=c(0,0,100,100,0)) fhat.b <- kde.truncate(fhat, boundary=rectb) plot(fhat, col=1, xlim=c(0,100), ylim=c(0,100)) plot(fhat.b, add=TRUE, col=4) rect(0,0,100,100, lty=2) library(oz) data(grevillea) wa.coast <- ozRegion(section=1) wa.polygon <- cbind(wa.coast$lines[[1]]$x, wa.coast$lines[[1]]$y) fhat1 <- kdde(x=grevillea, deriv.order=1) fhat1 <- kdde.truncate(fhat1, wa.polygon) oz(section=1, xlim=c(113,122), ylim=c(-36,-29)) plot(fhat1, add=TRUE, display="filled.contour")
Kernel density ridge estimation for 2- to 3-dimensional data.
kdr(x, y, H, p=1, max.iter=400, tol.iter, segment=TRUE, k, kmax, min.seg.size, keep.path=FALSE, gridsize, xmin, xmax, binned, bgridsize, w, fhat, density.cutoff, pre=TRUE, verbose=FALSE) kdr.segment(x, k, kmax, min.seg.size, verbose=FALSE) ## S3 method for class 'kdr' plot(x, ...)
kdr(x, y, H, p=1, max.iter=400, tol.iter, segment=TRUE, k, kmax, min.seg.size, keep.path=FALSE, gridsize, xmin, xmax, binned, bgridsize, w, fhat, density.cutoff, pre=TRUE, verbose=FALSE) kdr.segment(x, k, kmax, min.seg.size, verbose=FALSE) ## S3 method for class 'kdr' plot(x, ...)
x |
matrix of data values or an object of class |
y |
matrix of initial values |
p |
dimension of density ridge |
H |
bandwidth matrix/scalar bandwidth. If missing,
|
max.iter |
maximum number of iterations. Default is 400. |
tol.iter |
distance under which two successive iterations are
considered convergent. Default is 0.001*min marginal IQR of |
segment |
flag to compute segments of density ridge. Default is TRUE. |
k |
number of segments to partition density ridge |
kmax |
maximum number of segments to partition density ridge. Default is 30. |
min.seg.size |
minimum length of a segment of a density
ridge. Default is |
keep.path |
flag to store the density gradient ascent paths. Default is FALSE. |
gridsize |
vector of number of grid points |
xmin , xmax
|
vector of minimum/maximum values for grid |
binned |
flag for binned estimation. |
bgridsize |
vector of binning grid sizes |
w |
vector of weights. Default is a vector of all ones. |
fhat |
kde of |
density.cutoff |
density threshold under which the |
pre |
flag for pre-scaling data. Default is TRUE. |
verbose |
flag to print out progress information. Default is FALSE. |
... |
other graphics parameters |
Kernel density ridge estimation is based on reduced dimension kernel mean shift. See Ozertem & Erdogmus (2011).
If y
is missing, then it defaults to the grid of size
gridsize
spanning from xmin
to xmax
.
If the bandwidth H
is missing, then
the default bandwidth is the plug-in selector for the density gradient
Hpi(x,deriv.order=2)
. Any bandwidth that is suitable for the
density Hessian is also suitable for the kernel density ridge.
kdr(, segment=TRUE)
or kdr.segment()
carries out the segmentation of the density ridge points in end.points
. If k
is set, then k
segments are created. If k
is not set, then the optimal number of segments is chosen from 1:kmax
, with kmax=30
by default. The segments are created via a hierarchical clustering with single linkage. *Experimental: following the segmentation, the points within each segment are ordered to facilitate a line plot in plot(, type="l")
. The optimal ordering is not always achieved in this experimental implementation, though a scatterplot plot(, type="p")
always suffices, regardless of this ordering.*
A kernel density ridge set is an object of class kdr
which is a list with fields:
x , y
|
data points - same as input |
end.points |
matrix of final iterates starting from |
H |
bandwidth matrix |
names |
variable names |
tol.iter , tol.clust , min.seg.size
|
tuning parameter values - same as input |
binned |
flag for binned estimation |
names |
variable names |
w |
vector of weights |
path |
list of density gradient ascent paths where |
Ozertem, U. & Erdogmus, D. (2011) Locally defined principal curves and surfaces, Journal of Machine Learning Research, 12, 1249-1286.
data(cardio) set.seed(8192) cardio.train.ind <- sample(1:nrow(cardio), round(nrow(cardio)/4,0)) cardio2 <- cardio[cardio.train.ind,c(8,18)] cardio.dr2 <- kdr(x=cardio2, gridsize=c(21,21)) ## gridsize=c(21,21) is for illustrative purposes only plot(cardio2, pch=16, col=3) plot(cardio.dr2, cex=0.5, pch=16, col=6, add=TRUE) ## Not run: cardio3 <- cardio[cardio.train.ind,c(8,18,11)] cardio.dr3 <- kdr(x=cardio3) plot(cardio.dr3, pch=16, col=6, xlim=c(10,90), ylim=c(70,180), zlim=c(0,40)) plot3D::points3D(cardio3[,1], cardio3[,2], cardio3[,3], pch=16, col=3, add=TRUE) library(maps) data(quake) quake <- quake[quake$prof==1,] ## Pacific Ring of Fire quake$long[quake$long<0] <- quake$long[quake$long<0] + 360 quake <- quake[, c("long", "lat")] data(plate) ## tectonic plate boundaries plate <- plate[plate$long < -20 | plate$long > 20,] plate$long[plate$long<0 & !is.na(plate$long)] <- plate$long[plate$long<0 & !is.na(plate$long)] + 360 quake.dr <- kdr(x=quake, xmin=c(70,-70), xmax=c(310, 80)) map(wrap=c(0,360), lty=2) lines(plate[,1:2], col=4, lwd=2) plot(quake.dr, type="p", cex=0.5, pch=16, col=6, add=TRUE) ## End(Not run)
data(cardio) set.seed(8192) cardio.train.ind <- sample(1:nrow(cardio), round(nrow(cardio)/4,0)) cardio2 <- cardio[cardio.train.ind,c(8,18)] cardio.dr2 <- kdr(x=cardio2, gridsize=c(21,21)) ## gridsize=c(21,21) is for illustrative purposes only plot(cardio2, pch=16, col=3) plot(cardio.dr2, cex=0.5, pch=16, col=6, add=TRUE) ## Not run: cardio3 <- cardio[cardio.train.ind,c(8,18,11)] cardio.dr3 <- kdr(x=cardio3) plot(cardio.dr3, pch=16, col=6, xlim=c(10,90), ylim=c(70,180), zlim=c(0,40)) plot3D::points3D(cardio3[,1], cardio3[,2], cardio3[,3], pch=16, col=3, add=TRUE) library(maps) data(quake) quake <- quake[quake$prof==1,] ## Pacific Ring of Fire quake$long[quake$long<0] <- quake$long[quake$long<0] + 360 quake <- quake[, c("long", "lat")] data(plate) ## tectonic plate boundaries plate <- plate[plate$long < -20 | plate$long > 20,] plate$long[plate$long<0 & !is.na(plate$long)] <- plate$long[plate$long<0 & !is.na(plate$long)] + 360 quake.dr <- kdr(x=quake, xmin=c(70,-70), xmax=c(310, 80)) map(wrap=c(0,360), lty=2) lines(plate[,1:2], col=4, lwd=2) plot(quake.dr, type="p", cex=0.5, pch=16, col=6, add=TRUE) ## End(Not run)
Kernel functional estimate for 1- to 6-dimensional data.
kfe(x, G, deriv.order, inc=1, binned, bin.par, bgridsize, deriv.vec=TRUE, add.index=TRUE, verbose=FALSE) Hpi.kfe(x, nstage=2, pilot, pre="sphere", Hstart, binned=FALSE, bgridsize, amise=FALSE, deriv.order=0, verbose=FALSE, optim.fun="optim") Hpi.diag.kfe(x, nstage=2, pilot, pre="scale", Hstart, binned=FALSE, bgridsize, amise=FALSE, deriv.order=0, verbose=FALSE, optim.fun="optim") hpi.kfe(x, nstage=2, binned=FALSE, bgridsize, amise=FALSE, deriv.order=0)
kfe(x, G, deriv.order, inc=1, binned, bin.par, bgridsize, deriv.vec=TRUE, add.index=TRUE, verbose=FALSE) Hpi.kfe(x, nstage=2, pilot, pre="sphere", Hstart, binned=FALSE, bgridsize, amise=FALSE, deriv.order=0, verbose=FALSE, optim.fun="optim") Hpi.diag.kfe(x, nstage=2, pilot, pre="scale", Hstart, binned=FALSE, bgridsize, amise=FALSE, deriv.order=0, verbose=FALSE, optim.fun="optim") hpi.kfe(x, nstage=2, binned=FALSE, bgridsize, amise=FALSE, deriv.order=0)
x |
vector/matrix of data values |
nstage |
number of stages in the plug-in bandwidth selector (1 or 2) |
pilot |
"dscalar" = single pilot bandwidth (default) |
pre |
"scale" = |
Hstart |
initial bandwidth matrix, used in numerical optimisation |
binned |
flag for binned estimation |
bgridsize |
vector of binning grid sizes |
amise |
flag to return the minimal scaled PI value |
deriv.order |
derivative order |
verbose |
flag to print out progress information. Default is FALSE. |
optim.fun |
optimiser function: one of |
G |
pilot bandwidth matrix |
inc |
0=exclude diagonal, 1=include diagonal terms in kfe calculation |
bin.par |
binning parameters - output from |
deriv.vec |
flag to compute duplicated partial derivatives in the vectorised form. Default is FALSE. |
add.index |
flag to output derivative indices matrix. Default is true. |
Hpi.kfe
is the optimal plug-in bandwidth for -th order kernel functional estimator
based on the unconstrained pilot selectors of Chacon & Duong (2010).
hpi.kfe
is the 1-d equivalent, using the formulas from
Wand & Jones (1995, p.70).
kfe
does not usually need to be called explicitly by the user.
Plug-in bandwidth matrix for -th order kernel functional estimator.
Chacon, J.E. & Duong, T. (2010) Multivariate plug-in bandwidth selection with unconstrained pilot matrices. Test, 19, 375-398.
Wand, M.P. & Jones, M.C. (1995) Kernel Smoothing. Chapman & Hall/CRC, London.
Kernel feature significance for 1- to 6-dimensional data.
kfs(x, H, h, deriv.order=2, gridsize, gridtype, xmin, xmax, supp=3.7, eval.points, binned, bgridsize, positive=FALSE, adj.positive, w, verbose=FALSE, signif.level=0.05)
kfs(x, H, h, deriv.order=2, gridsize, gridtype, xmin, xmax, supp=3.7, eval.points, binned, bgridsize, positive=FALSE, adj.positive, w, verbose=FALSE, signif.level=0.05)
x |
matrix of data values |
H , h
|
bandwidth matrix/scalar bandwidth. If these are missing, |
deriv.order |
derivative order (scalar) |
gridsize |
vector of number of grid points |
gridtype |
not yet implemented |
xmin , xmax
|
vector of minimum/maximum values for grid |
supp |
effective support for standard normal |
eval.points |
vector or matrix of points at which estimate is evaluated |
binned |
flag for binned estimation |
bgridsize |
vector of binning grid sizes |
positive |
flag if 1-d data are positive. Default is FALSE. |
adj.positive |
adjustment applied to positive 1-d data |
w |
vector of weights. Default is a vector of all ones. |
verbose |
flag to print out progress information. Default is FALSE. |
signif.level |
overall level of significance for hypothesis tests. Default is 0.05. |
Feature significance is based on significance testing of the gradient (first derivative) and curvature (second derivative) of a kernel density estimate. Only the latter is currently implemented, and is also known as significant modal regions.
The hypothesis test at a grid point is
,
i.e. the density Hessian matrix
is negative definite.
The
-values are computed for each
using that
the test statistic is
approximately chi-squared distributed with
d.f.
We then use a Hochberg-type simultaneous testing procedure, based on the
ordered
-values, to control the
overall level of significance to be
signif.level
. If
is rejected then
belongs to a significant modal region.
The computations are based on kdde(x, deriv.order=2)
so
kfs
inherits its behaviour from kdde
.
If the bandwidth H
is missing, then
the default bandwidth is the plug-in selector
Hpi(,deriv.order=2)
. Likewise for missing h
.
The effective support, binning, grid size, grid range, positive
parameters are the same as kde
.
This function is similar to the featureSignif
function in the
feature package, except that it accepts unconstrained bandwidth
matrices.
A kernel feature significance estimate is an object of class
kfs
which is a list with fields
x |
data points - same as input |
eval.points |
vector or list of points at which the estimate is evaluated |
estimate |
binary matrix for significant feature at
|
h |
scalar bandwidth (1-d only) |
H |
bandwidth matrix |
gridtype |
"linear" |
gridded |
flag for estimation on a grid |
binned |
flag for binned estimation |
names |
variable names |
w |
vector of weights |
deriv.order |
derivative order (scalar) |
deriv.ind |
martix where each row is a vector of partial derivative indices. |
This is the same structure as a kdde
object, except that
estimate
is a binary matrix rather than real-valued.
Chaudhuri, P. & Marron, J.S. (1999) SiZer for exploration of structures in curves. Journal of the American Statistical Association, 94, 807-823.
Duong, T., Cowling, A., Koch, I. & Wand, M.P. (2008) Feature significance for multivariate kernel density estimation. Computational Statistics and Data Analysis, 52, 4225-4242.
Godtliebsen, F., Marron, J.S. & Chaudhuri, P. (2002) Significance in scale space for bivariate density estimation. Journal of Computational and Graphical Statistics, 11, 1-22.
data(geyser, package="MASS") geyser.fs <- kfs(geyser$duration, binned=TRUE) plot(geyser.fs, xlab="duration") ## see example in ? plot.kfs
data(geyser, package="MASS") geyser.fs <- kfs(geyser$duration, binned=TRUE) plot(geyser.fs, xlab="duration") ## see example in ? plot.kfs
Kernel mean shift clustering for 2- to 6-dimensional data.
kms(x, y, H, max.iter=400, tol.iter, tol.clust, min.clust.size, merge=TRUE, keep.path=FALSE, verbose=FALSE) ## S3 method for class 'kms' plot(x, display="splom", col, col.fun, alpha=1, xlab, ylab, zlab, theta=-30, phi=40, add=FALSE, ...) ## S3 method for class 'kms' summary(object, ...)
kms(x, y, H, max.iter=400, tol.iter, tol.clust, min.clust.size, merge=TRUE, keep.path=FALSE, verbose=FALSE) ## S3 method for class 'kms' plot(x, display="splom", col, col.fun, alpha=1, xlab, ylab, zlab, theta=-30, phi=40, add=FALSE, ...) ## S3 method for class 'kms' summary(object, ...)
x |
matrix of data values or object of class |
y |
matrix of candidate data values for which the mean shift will
estimate their cluster labels. If missing, |
H |
bandwidth matrix/scalar bandwidth. If missing,
|
max.iter |
maximum number of iterations. Default is 400. |
tol.iter |
distance under which two successive iterations are
considered convergent. Default is 0.001*min marginal IQR of |
tol.clust |
distance under which two cluster modes are considered
to form one cluster. Default is 0.01*max marginal IQR of |
min.clust.size |
minimum cluster size (cardinality). Default is |
merge |
flag to merge clusters which are smaller than
|
keep.path |
flag to store the density gradient ascent paths. Default is FALSE. |
verbose |
flag to print out progress information. Default is FALSE. |
object |
object of class |
display |
type of display, "splom" (>=2-d) or "plot3D" (3-d) |
col , col.fun
|
vector or colours (one for each group) or colour function |
alpha |
colour transparency. Default is 1. |
xlab , ylab , zlab
|
axes labels |
theta , phi
|
graphics parameters for perspective plots (3-d) |
add |
flag to add to current plot. Default is FALSE. |
... |
other (graphics) parameters |
Mean shift clustering belongs to the class of modal or density-based
clustering methods.
The mean shift recurrence of the candidate point is
where
and
.
The sequence
follows the density gradient ascent
paths to converge to a local mode of the
density estimate
. Hence
is
iterated until it converges to its local mode, and this determines its
cluster label.
The mean shift recurrence is terminated if successive iterations are
less than tol.iter
or the maximum number of iterations
max.iter
is reached. Final iterates which are less than
tol.clust
distance apart are considered to form a single
cluster. If merge=TRUE
then the clusters whose cardinality is less
than min.clust.size
are iteratively merged with their nearest cluster.
If the bandwidth H
is missing, then
the default bandwidth is the plug-in selector for the density gradient
Hpi(x,deriv.order=1)
. Any bandwidth that is suitable for the
density gradient is also suitable for the mean shift.
A kernel mean shift clusters set is an object of class kms
which is a list with fields:
x , y
|
data points - same as input |
end.points |
matrix of final iterates starting from |
H |
bandwidth matrix |
label |
vector of cluster labels |
nclust |
number of clusters |
nclust.table |
frequency table of cluster labels |
mode |
matrix of cluster modes |
names |
variable names |
tol.iter , tol.clust , min.clust.size
|
tuning parameter values - same as input |
path |
list of density gradient ascent paths where |
Chacon, J.E. & Duong, T. (2013) Data-driven density estimation, with applications to nonparametric clustering and bump hunting. Electronic Journal of Statistics, 7, 499-532.
Comaniciu, D. & Meer, P. (2002). Mean shift: a robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24, 603-619.
data(crabs, package="MASS") kms.crabs <- kms(x=crabs[,c("FL","CW")]) plot(kms.crabs, pch=16) summary(kms.crabs) kms.crabs <- kms(x=crabs[,c("FL","CW","RW")]) plot(kms.crabs, pch=16) plot(kms.crabs, display="plot3D", pch=16)
data(crabs, package="MASS") kms.crabs <- kms(x=crabs[,c("FL","CW")]) plot(kms.crabs, pch=16) summary(kms.crabs) kms.crabs <- kms(x=crabs[,c("FL","CW","RW")]) plot(kms.crabs, pch=16) plot(kms.crabs, display="plot3D", pch=16)
Kernel receiver operating characteristic (ROC) curve for 1- to 3-dimensional data.
kroc(x1, x2, H1, h1, hy, gridsize, gridtype, xmin, xmax, supp=3.7, eval.points, binned, bgridsize, positive=FALSE, adj.positive, w, verbose=FALSE) ## S3 method for class 'kroc' predict(object, ..., x) ## S3 method for class 'kroc' summary(object, ...)
kroc(x1, x2, H1, h1, hy, gridsize, gridtype, xmin, xmax, supp=3.7, eval.points, binned, bgridsize, positive=FALSE, adj.positive, w, verbose=FALSE) ## S3 method for class 'kroc' predict(object, ..., x) ## S3 method for class 'kroc' summary(object, ...)
x , x1 , x2
|
vector/matrix of data values |
H1 , h1 , hy
|
bandwidth matrix/scalar bandwidths. If these are
missing, |
gridsize |
vector of number of grid points |
gridtype |
not yet implemented |
xmin , xmax
|
vector of minimum/maximum values for grid |
supp |
effective support for standard normal |
eval.points |
not yet implemented |
binned |
flag for binned estimation |
bgridsize |
vector of binning grid sizes |
positive |
flag if 1-d data are positive. Default is FALSE. |
adj.positive |
adjustment applied to positive 1-d data |
w |
vector of weights. Default is a vector of all ones. |
verbose |
flag to print out progress information. Default is FALSE. |
object |
object of class |
... |
other parameters |
In this set-up, the values in the first sample x1
should
be larger in general that those in the second sample x2
. The
usual method for computing 1-d ROC curves is not valid for
multivariate data. Duong (2014),
based on Lloyd (1998), develops an alternative formulation
based on the
cumulative distribution functions of
.
If the bandwidth H1
is missing from kroc
, then
the default bandwidth is the plug-in selector
Hpi.kcde
. Likewise for missing h1,hy
. A bandwidth matrix
H1
is required for x1
for d>1, but the second bandwidth hy
is always a scalar since are 1-d variables.
The effective support, binning, grid size, grid range, positive
parameters are the same as kde
.
–The summary
method for kroc
objects prints out the
summary indices of the ROC curve, as contained in the indices
field, namely the AUC (area under the curve) and Youden index.
A kernel ROC curve is an object of class kroc
which is a list
with fields:
x |
list of data values |
eval.points |
vector or list of points at which the estimate is evaluated |
estimate |
ROC curve estimate at |
gridtype |
"linear" |
gridded |
flag for estimation on a grid |
binned |
flag for binned estimation |
names |
variable names |
w |
vector of weights |
tail |
"lower.tail" |
h1 |
scalar bandwidth for first sample (1-d only) |
H1 |
bandwidth matrix for first sample |
hy |
scalar bandwidth for ROC curve |
indices |
summary indices of ROC curve. |
Duong, T. (2016) Non-parametric smoothed estimation of multivariate cumulative distribution and survival functions, and receiver operating characteristic curves. Journal of the Korean Statistical Society, 45, 33-50.
Lloyd, C. (1998) Using smoothed receiver operating curves to summarize and compare diagnostic systems. Journal of the American Statistical Association, 93, 1356-1364.
samp <- 1000 x <- rnorm.mixt(n=samp, mus=0, sigmas=1, props=1) y <- rnorm.mixt(n=samp, mus=0.5, sigmas=1, props=1) Rhat <- kroc(x1=x, x2=y) summary(Rhat) predict(Rhat, x=0.5)
samp <- 1000 x <- rnorm.mixt(n=samp, mus=0, sigmas=1, props=1) y <- rnorm.mixt(n=samp, mus=0.5, sigmas=1, props=1) Rhat <- kroc(x1=x, x2=y) summary(Rhat) predict(Rhat, x=0.5)
Kernel support estimate for 2 and 3-dimensional data.
ksupp(fhat, cont=95, abs.cont, convex.hull=TRUE) ## S3 method for class 'ksupp' plot(x, display="plot3D", ...)
ksupp(fhat, cont=95, abs.cont, convex.hull=TRUE) ## S3 method for class 'ksupp' plot(x, display="plot3D", ...)
fhat |
object of class |
cont |
percentage for contour level curve. Default is 95. |
abs.cont |
absolute density estimate height for contour level curve |
convex.hull |
flag to compute convex hull of contour level curve. Default is TRUE. |
x |
object of class |
display |
one of "plot3D", "rgl" (required for 3-d only) |
... |
other graphics parameters |
The kernel support estimate is the level set of the density estimate
that exceeds the cont
percent contour level. If this level set
is a simply connected region, then this can suffice to be a
conservative estimate of the density support. Otherwise, the convex
hull of the level set is advised. For 2-d data, the convex hull is computed by chull
; for 3-d data, it is computed by geometry::convhulln
.
A kernel support estimate is an object of class ksupp
, i.e. a 2- or 3-column matrix which delimits the (convex hull of the) level set of the density estimate fhat
.
data(grevillea) fhat <- kde(x=grevillea) fhat.supp <- ksupp(fhat) plot(fhat, display="filled.contour", cont=seq(10,90,by=10)) plot(fhat, cont=95, add=TRUE, col=1) plot(fhat.supp, lty=2) data(iris) fhat <- kde(x=iris[,1:3]) fhat.supp <- ksupp(fhat) plot(fhat) plot(fhat.supp, add=TRUE, col=3, alpha=0.1)
data(grevillea) fhat <- kde(x=grevillea) fhat.supp <- ksupp(fhat) plot(fhat, display="filled.contour", cont=seq(10,90,by=10)) plot(fhat, cont=95, add=TRUE, col=1) plot(fhat.supp, lty=2) data(iris) fhat <- kde(x=iris[,1:3]) fhat.supp <- ksupp(fhat) plot(fhat) plot(fhat.supp, add=TRUE, col=3, alpha=0.1)
Random generation and density values from normal and t-mixture distributions.
dnorm.mixt(x, mus=0, sigmas=1, props=1) rnorm.mixt(n=100, mus=0, sigmas=1, props=1, mixt.label=FALSE) dmvnorm.mixt(x, mus, Sigmas, props=1, verbose=FALSE) rmvnorm.mixt(n=100, mus=c(0,0), Sigmas=diag(2), props=1, mixt.label=FALSE) rmvt.mixt(n=100, mus=c(0,0), Sigmas=diag(2), dfs=7, props=1) dmvt.mixt(x, mus, Sigmas, dfs, props) mvnorm.mixt.mode(mus, Sigmas, props=1, verbose=FALSE)
dnorm.mixt(x, mus=0, sigmas=1, props=1) rnorm.mixt(n=100, mus=0, sigmas=1, props=1, mixt.label=FALSE) dmvnorm.mixt(x, mus, Sigmas, props=1, verbose=FALSE) rmvnorm.mixt(n=100, mus=c(0,0), Sigmas=diag(2), props=1, mixt.label=FALSE) rmvt.mixt(n=100, mus=c(0,0), Sigmas=diag(2), dfs=7, props=1) dmvt.mixt(x, mus, Sigmas, dfs, props) mvnorm.mixt.mode(mus, Sigmas, props=1, verbose=FALSE)
n |
number of random variates |
x |
matrix of quantiles |
mus |
(stacked) matrix of mean vectors (>1-d) or vector of means (1-d) |
Sigmas |
(stacked) matrix of variance matrices (>1-d) |
sigmas |
vector of standard deviations (1-d) |
props |
vector of mixing proportions |
mixt.label |
flag to output numeric label indicating mixture component. Default is FALSE. |
verbose |
flag to print out progress information. Default is FALSE. |
dfs |
vector of degrees of freedom |
rmvnorm.mixt
and dmvnorm.mixt
are based on the
rmvnorm
and dmvnorm
functions from the mvtnorm
package. Likewise for rmvt.mixt
and dmvt.mixt
.
For the normal mixture densities, mvnorm.mixt.mode
computes the
local modes: these are usually very close but not exactly equal to the
component means.
Normal and t-mixture random vectors and density values.
## univariate normal mixture x <- rnorm.mixt(1000, mus=c(-1,1), sigmas=c(0.5, 0.5), props=c(1/2, 1/2)) ## bivariate mixtures mus <- rbind(c(-1,0), c(1, 2/sqrt(3)), c(1,-2/sqrt(3))) Sigmas <- 1/25*rbind(invvech(c(9, 63/10, 49/4)), invvech(c(9,0,49/4)), invvech(c(9,0,49/4))) props <- c(3,3,1)/7 dfs <- c(7,3,2) x <- rmvnorm.mixt(1000, mus=mus, Sigmas=Sigmas, props=props) y <- rmvt.mixt(1000, mus=mus, Sigmas=Sigmas, dfs=dfs, props=props) mvnorm.mixt.mode(mus=mus, Sigmas=Sigmas, props=props)
## univariate normal mixture x <- rnorm.mixt(1000, mus=c(-1,1), sigmas=c(0.5, 0.5), props=c(1/2, 1/2)) ## bivariate mixtures mus <- rbind(c(-1,0), c(1, 2/sqrt(3)), c(1,-2/sqrt(3))) Sigmas <- 1/25*rbind(invvech(c(9, 63/10, 49/4)), invvech(c(9,0,49/4)), invvech(c(9,0,49/4))) props <- c(3,3,1)/7 dfs <- c(7,3,2) x <- rmvnorm.mixt(1000, mus=mus, Sigmas=Sigmas, props=props) y <- rmvt.mixt(1000, mus=mus, Sigmas=Sigmas, dfs=dfs, props=props) mvnorm.mixt.mode(mus=mus, Sigmas=Sigmas, props=props)
Plot for histogram density estimate for 1- and 2-dimensional data.
## S3 method for class 'histde' plot(x, ...)
## S3 method for class 'histde' plot(x, ...)
x |
object of class |
... |
other graphics parameters:
|
For histde
objects, the function headers for the different dimensional data are
## univariate plot(fhat, xlab, ylab="Density function", add=FALSE, drawpoints=FALSE, col.pt=4, jitter=FALSE, border=1, alpha=1, ...) ## bivariate plot(fhat, breaks, nbreaks=11, xlab, ylab, zlab="Density function", cex=1, pch=1, add=FALSE, drawpoints=FALSE, col, col.fun, alpha=1, col.pt=4, lty.rect=2, cex.text=1, border, lwd.rect=1, col.rect="transparent", add.grid=TRUE, ...)
The 1-d plot is a standard plot of a histogram generated by hist
. If
drawpoints=TRUE
then a rug plot is added.
The 2-d plot is similar to the display="filled.contour"
option from
plot.kde
with the default nbreaks=11
contour
levels.
Plots for 1-d and 2-d are sent to graphics window.
data(iris) ## univariate example fhat <- histde(x=iris[,2]) plot(fhat, xlab="Sepal length") ## bivariate example fhat <- histde(x=iris[,2:3]) plot(fhat, drawpoints=TRUE) box()
data(iris) ## univariate example fhat <- histde(x=iris[,2]) plot(fhat, xlab="Sepal length") ## bivariate example fhat <- histde(x=iris[,2:3]) plot(fhat, drawpoints=TRUE) box()
Plot for kernel cumulative distribution estimate 1- to 3-dimensional data.
## S3 method for class 'kcde' plot(x, ...)
## S3 method for class 'kcde' plot(x, ...)
x |
object of class |
... |
other graphics parameters used in |
For kcde
objects, the function headers for the different dimensional data are
## univariate plot(Fhat, xlab, ylab="Distribution function", add=FALSE, drawpoints=FALSE, col.pt=4, jitter=FALSE, alpha=1, ...) ## bivariate plot(Fhat, display="persp", cont=seq(10,90, by=10), abs.cont, xlab, ylab, zlab="Distribution function", cex=1, pch=1, add=FALSE, drawpoints=FALSE, drawlabels=TRUE, theta=-30, phi=40, d=4, col.pt=4, col, col.fun, alpha=1, lwd=1, border=NA, thin=3, lwd.fc=5, ...) ## trivariate plot(Fhat, display="plot3D", cont=c(25,50,75), colors, col, alphavec, size=3, cex=1, pch=1, theta=-30, phi=40, d=4, ticktype="detailed", bty="f", col.pt=4, add=FALSE, xlab, ylab, zlab, drawpoints=FALSE, alpha, box=TRUE, axes=TRUE, ...)
Plots for 1-d and 2-d are sent to graphics window. Plot for 3-d is sent to graphics/RGL window.
data(iris) Fhat <- kcde(x=iris[,1]) plot(Fhat, xlab="Sepal.Length") Fhat <- kcde(x=iris[,1:2]) plot(Fhat) Fhat <- kcde(x=iris[,1:3]) plot(Fhat, alpha=0.3)
data(iris) Fhat <- kcde(x=iris[,1]) plot(Fhat, xlab="Sepal.Length") Fhat <- kcde(x=iris[,1:2]) plot(Fhat) Fhat <- kcde(x=iris[,1:3]) plot(Fhat, alpha=0.3)
Plot for kernel discriminant analysis for 1- to 3-dimensional data.
## S3 method for class 'kda' plot(x, y, y.group, ...)
## S3 method for class 'kda' plot(x, y, y.group, ...)
x |
object of class |
y |
matrix of test data points |
y.group |
vector of group labels for test data points |
... |
other graphics parameters:
and those used in |
For kda
objects, the function headers for the different dimensional data are
## univariate plot(x, y, y.group, prior.prob=NULL, xlim, ylim, xlab, ylab="Weighted density function", drawpoints=FALSE, col, col.fun, col.part, col.pt, lty, jitter=TRUE, rugsize, add=FALSE, alpha=1, ...) ## bivariate plot(x, y, y.group, prior.prob=NULL, display.part="filled.contour", cont=c(25,50,75), abs.cont, approx.cont=TRUE, xlim, ylim, xlab, ylab, drawpoints=FALSE, drawlabels=TRUE, cex=1, pch, lty, part=TRUE, col, col.fun, col.part, col.pt, alpha=1, lwd=1, lwd.part=0, add=FALSE, ...) ## trivariate plot(x, y, y.group, prior.prob=NULL, display="plot3D", cont=c(25,50,75), abs.cont, approx.cont=TRUE, colors, col, col.fun, col.pt, alpha=0.5, alphavec, xlab, ylab, zlab, drawpoints=FALSE, size=3, cex=1, pch, theta=-30, phi=40, d=4, ticktype="detailed", bty="f", add=FALSE, ...)
Plots for 1-d and 2-d are sent to graphics window. Plot for 3-d is sent to graphics/RGL window.
data(iris) ## univariate example ir <- iris[,1] ir.gr <- iris[,5] kda.fhat <- kda(x=ir, x.group=ir.gr, xmin=3, xmax=9) plot(kda.fhat, xlab="Sepal length") ## bivariate example ir <- iris[,1:2] ir.gr <- iris[,5] kda.fhat <- kda(x=ir, x.group=ir.gr) plot(kda.fhat, alpha=0.2, drawlabels=FALSE) ## trivariate example ir <- iris[,1:3] ir.gr <- iris[,5] kda.fhat <- kda(x=ir, x.group=ir.gr) plot(kda.fhat) ## colour=species, transparency=density heights
data(iris) ## univariate example ir <- iris[,1] ir.gr <- iris[,5] kda.fhat <- kda(x=ir, x.group=ir.gr, xmin=3, xmax=9) plot(kda.fhat, xlab="Sepal length") ## bivariate example ir <- iris[,1:2] ir.gr <- iris[,5] kda.fhat <- kda(x=ir, x.group=ir.gr) plot(kda.fhat, alpha=0.2, drawlabels=FALSE) ## trivariate example ir <- iris[,1:3] ir.gr <- iris[,5] kda.fhat <- kda(x=ir, x.group=ir.gr) plot(kda.fhat) ## colour=species, transparency=density heights
Plot for kernel density derivative estimate for 1- to 3-dimensional data.
## S3 method for class 'kdde' plot(x, ...)
## S3 method for class 'kdde' plot(x, ...)
x |
object of class |
... |
other graphics parameters:
and those used in |
For kdde
objects, the function headers for the different dimensional data are
## univariate plot(fhat, ylab="Density derivative function", cont=50, abs.cont, alpha=1, ...) ## bivariate plot(fhat, which.deriv.ind=1, cont=c(25,50,75), abs.cont, display="slice", zlab="Density derivative function", col, col.fun, alpha=1, kdde.flag=TRUE, thin=3, transf=1, neg.grad=FALSE, ...) ## trivariate plot(fhat, which.deriv.ind=1, display="plot3D", cont=c(25,50,75), abs.cont, colors, col, col.fun, ...)
Plots for 1-d and 2-d are sent to graphics window. Plot for 3-d is sent to graphics/RGL window.
In addition to the display options inherited from plot.kde
, the
first derivative has display="quiver"
. This is a quiver plot
where the size and direction of the arrow indicates the
magnitude/direction of the density gradient. See quiver
from
the pracma package for more details.
## univariate example data(tempb) fhat1 <- kdde(x=tempb[,"tmin"], deriv.order=1) ## gradient [df/dx, df/dy] plot(fhat1, xlab="Min. temp.", col.cont=4) ## df/dx points(20,predict(fhat1, x=20)) ## bivariate example fhat1 <- kdde(x=tempb[,c("tmin", "tmax")], deriv.order=1) plot(fhat1, display="quiver") ## gradient [df/dx, df/dy] fhat2 <- kdde(x=tempb[,c("tmin", "tmax")], deriv.order=2) plot(fhat2, which.deriv.ind=2, display="persp", phi=10) plot(fhat2, which.deriv.ind=2, display="filled.contour") ## d^2 f/(dx dy): blue=-ve, red=+ve s2 <- kcurv(fhat2) plot(s2, display="filled.contour", alpha=0.5, lwd=1) ## summary curvature ## trivariate example data(iris) fhat1 <- kdde(iris[,2:4], deriv.order=1) plot(fhat1)
## univariate example data(tempb) fhat1 <- kdde(x=tempb[,"tmin"], deriv.order=1) ## gradient [df/dx, df/dy] plot(fhat1, xlab="Min. temp.", col.cont=4) ## df/dx points(20,predict(fhat1, x=20)) ## bivariate example fhat1 <- kdde(x=tempb[,c("tmin", "tmax")], deriv.order=1) plot(fhat1, display="quiver") ## gradient [df/dx, df/dy] fhat2 <- kdde(x=tempb[,c("tmin", "tmax")], deriv.order=2) plot(fhat2, which.deriv.ind=2, display="persp", phi=10) plot(fhat2, which.deriv.ind=2, display="filled.contour") ## d^2 f/(dx dy): blue=-ve, red=+ve s2 <- kcurv(fhat2) plot(s2, display="filled.contour", alpha=0.5, lwd=1) ## summary curvature ## trivariate example data(iris) fhat1 <- kdde(iris[,2:4], deriv.order=1) plot(fhat1)
Plot for kernel density estimate for 1- to 3-dimensional data.
## S3 method for class 'kde' plot(x, ...)
## S3 method for class 'kde' plot(x, ...)
x |
object of class |
... |
other graphics parameters:
|
For kde
objects, the function headers for the different dimensional data are
## univariate plot(fhat, xlab, ylab="Density function", add=FALSE, drawpoints=FALSE, col=1, col.pt=4, col.cont=1, cont.lwd=1, jitter=FALSE, cont, abs.cont, approx.cont=TRUE, alpha=1, ...) ## bivariate plot(fhat, display="slice", cont=c(25,50,75), abs.cont, approx.cont=TRUE, xlab, ylab, zlab="Density function", cex=1, pch=1, add=FALSE, drawpoints=FALSE, drawlabels=TRUE, theta=-30, phi=40, d=4, col.pt=4, col, col.fun, alpha=1, lwd=1, border=1, thin=3, kdde.flag=FALSE, ticktype="detailed", ...) ## trivariate plot(fhat, display="plot3D", cont=c(25,50,75), abs.cont, approx.cont=TRUE, colors, col, col.fun, alphavec, size=3, cex=1, pch=1, theta=-30, phi=40, d=4, ticktype="detailed", bty="f", col.pt=4, add=FALSE, xlab, ylab, zlab, drawpoints=FALSE, alpha, box=TRUE, axes=TRUE, ...)
For 1-dimensional data, the plot is a standard plot of a 1-d curve. If
drawpoints=TRUE
then a rug plot is added. If cont
is specified,
the horizontal line on the x-axis indicates the cont
% highest
density level set.
For 2-dimensional data, the different types of plotting displays are
controlled by the display
parameter.
(a) If display="slice"
then a slice/contour plot
is generated using contour
.
(b) If display
is "filled.contour"
then a filled contour plot is generated.
The default contours are at 25%, 50%, 75% or
cont=c(25,50,75)
which are upper percentages of
highest density regions.
(c) If display="persp"
then a perspective/wire-frame plot
is generated. The default z-axis limits zlim
are the default
from the usual persp
command.
(d) If display="image"
then an image plot
is generated.
For 3-dimensional data, the plot is a series of nested
3-d contours. The default contours are cont=c(25,50,75)
. The
default opacity alphavec
ranges from 0.1 to 0.5.
For ks 1.12.0, base R graphics becomes the default plotting engine:
to create an rgl plot like in previous versions, set
display="rgl"
.
To specify contours, either one of cont
or abs.cont
is required. cont
specifies upper percentages which
correspond to probability contour regions. If abs.cont
is set
to particular values, then contours at these levels are drawn.
This second option is useful for plotting
multiple density estimates with common contour levels. See
contourLevels
for details on computing contour levels.
If approx=FALSE
, then the exact KDE is computed. Otherwise
it is interpolated from an existing KDE grid, which can dramatically
reduce computation time for large data sets.
If a colour function is specified in col.fun
, it should have the number of colours as a single argument, e.g. function(n){hcl.colors(n, ...)}
. The transparent background colour is automatically concatenated before this colour function. If col
is specified, it overrides col.fun
. There should be one more colour than the number of contours, i.e. background colour plus one for each contour.
Plots for 1-d and 2-d are sent to graphics window. Plot for 3-d is sent to graphics/RGL window.
data(iris) ## univariate example fhat <- kde(x=iris[,2]) plot(fhat, cont=50, col.cont=4, cont.lwd=2, xlab="Sepal length") ## bivariate example fhat <- kde(x=iris[,2:3]) plot(fhat, display="filled.contour", cont=seq(10,90,by=10), lwd=1, alpha=0.5) plot(fhat, display="persp", border=1, alpha=0.5) ## trivariate example fhat <- kde(x=iris[,2:4]) plot(fhat) if (interactive()) plot(fhat, display="rgl")
data(iris) ## univariate example fhat <- kde(x=iris[,2]) plot(fhat, cont=50, col.cont=4, cont.lwd=2, xlab="Sepal length") ## bivariate example fhat <- kde(x=iris[,2:3]) plot(fhat, display="filled.contour", cont=seq(10,90,by=10), lwd=1, alpha=0.5) plot(fhat, display="persp", border=1, alpha=0.5) ## trivariate example fhat <- kde(x=iris[,2:4]) plot(fhat) if (interactive()) plot(fhat, display="rgl")
Plot for kernel local significant difference regions for 1- to 3-dimensional data.
## S3 method for class 'kde.loctest' plot(x, ...)
## S3 method for class 'kde.loctest' plot(x, ...)
x |
object of class |
... |
other graphics parameters:
and those used in |
For kde.loctest
objects, the function headers are
## univariate plot(x, lcol, col, add=FALSE, xlab="x", ylab, rugsize, add.legend=TRUE, pos.legend="topright", alpha=1, ...) ## bivariate plot(x, col, add=FALSE, add.legend=TRUE, pos.legend="topright", alpha=1, ...) ## trivariate plot(x, col, color, add=FALSE, box=TRUE, axes=TRUE, alphavec=c(0.5, 0.5), add.legend=TRUE, ...)
Plots for 1-d and 2-d are sent to graphics window. Plot for 3-d is sent to graphics/RGL window.
## bivariate data(air) air.var <- c("co2","pm10","no") air <- air[, c("date","time",air.var)] air2 <- reshape(air, idvar="date", timevar="time", direction="wide") a1 <- as.matrix(na.omit(air2[, paste0(air.var, ".08:00")])) a2 <- as.matrix(na.omit(air2[, paste0(air.var, ".20:00")])) colnames(a1) <- air.var colnames(a2) <- air.var loct <- kde.local.test(x1=a1[,c("co2","pm10")], x2=a2[,c("co2","pm10")]) plot(loct, lwd=1) ## trivariate loct <- kde.local.test(x1=a1, x2=a2) plot(loct, xlim=c(0,800), ylim=c(0,300), zlim=c(0,300))
## bivariate data(air) air.var <- c("co2","pm10","no") air <- air[, c("date","time",air.var)] air2 <- reshape(air, idvar="date", timevar="time", direction="wide") a1 <- as.matrix(na.omit(air2[, paste0(air.var, ".08:00")])) a2 <- as.matrix(na.omit(air2[, paste0(air.var, ".20:00")])) colnames(a1) <- air.var colnames(a2) <- air.var loct <- kde.local.test(x1=a1[,c("co2","pm10")], x2=a2[,c("co2","pm10")]) plot(loct, lwd=1) ## trivariate loct <- kde.local.test(x1=a1, x2=a2) plot(loct, xlim=c(0,800), ylim=c(0,300), zlim=c(0,300))
Plot of partition for kernel density clustering for 2-dimensional data.
mvnorm.mixt.part(mus, Sigmas, props=1, xmin, xmax, gridsize, max.iter=100, verbose=FALSE) kms.part(x, H, xmin, xmax, gridsize, verbose=FALSE, ...) ## S3 method for class 'kde.part' plot(x, display="filled.contour", col, col.fun, alpha=1, add=FALSE, ...)
mvnorm.mixt.part(mus, Sigmas, props=1, xmin, xmax, gridsize, max.iter=100, verbose=FALSE) kms.part(x, H, xmin, xmax, gridsize, verbose=FALSE, ...) ## S3 method for class 'kde.part' plot(x, display="filled.contour", col, col.fun, alpha=1, add=FALSE, ...)
mus |
(stacked) matrix of mean vectors |
Sigmas |
(stacked) matrix of variance matrices |
props |
vector of mixing proportions |
xmin , xmax
|
vector of minimum/maximum values for grid |
gridsize |
vector of number of grid points |
max.iter |
maximum number of iterations |
verbose |
flag to print out progress information. Default is FALSE. |
x |
matrix of data values or an object of class |
H |
bandwidth matrix. If missing,
|
display |
type of display, "filled.contour" for filled contour plot |
col , col.fun
|
vector of plotting colours or colour function |
alpha |
colour transparency. Default is 1. |
add |
flag to add to current plot. Default is FALSE. |
... |
other parameters |
For 2-d data, kms.part
and mvnorm.mixt.part
produce a
kde.part
object whose
values are the class labels, rather than probability density values.
A kernel partition is an object of class kde.part
which is a
list with fields:
x |
data points - same as input |
eval.points |
vector or list of points at which the estimate is evaluated |
estimate |
density estimate at |
H |
bandwidth matrix |
gridtype |
"linear" |
gridded |
flag for estimation on a grid |
binned |
flag for binned estimation |
names |
variable names |
w |
vector of weights |
cont |
vector of probability contour levels |
end.points |
matrix of final iterates starting from |
label |
vector of cluster labels |
mode |
matrix of cluster modes |
nclust |
number of clusters |
nclust.table |
frequency table of cluster labels |
tol.iter , tol.clust , min.clust.size
|
tuning parameter values - same as input |
Plot is sent to graphics window.
## normal mixture partition mus <- rbind(c(-1,0), c(1, 2/sqrt(3)), c(1,-2/sqrt(3))) Sigmas <- 1/25*rbind(invvech(c(9, 63/10, 49/4)), invvech(c(9,0,49/4)), invvech(c(9,0,49/4))) props <- c(3,3,1)/7 gridsize <- c(11,11) ## small gridsize illustrative purposes only nmixt.part <- mvnorm.mixt.part(mus=mus, Sigmas=Sigmas, props=props, gridsize=gridsize) plot(nmixt.part, asp=1, xlim=c(-3,3), ylim=c(-3,3), alpha=0.5) ## kernel mean shift partition set.seed(81928192) x <- rmvnorm.mixt(n=10000, mus=mus, Sigmas=Sigmas, props=props) msize <- round(prod(gridsize)*0.1) kms.nmixt.part <- kms.part(x=x, min.clust.size=msize, gridsize=gridsize) plot(kms.nmixt.part, asp=1, xlim=c(-3,3), ylim=c(-3,3), alpha=0.5)
## normal mixture partition mus <- rbind(c(-1,0), c(1, 2/sqrt(3)), c(1,-2/sqrt(3))) Sigmas <- 1/25*rbind(invvech(c(9, 63/10, 49/4)), invvech(c(9,0,49/4)), invvech(c(9,0,49/4))) props <- c(3,3,1)/7 gridsize <- c(11,11) ## small gridsize illustrative purposes only nmixt.part <- mvnorm.mixt.part(mus=mus, Sigmas=Sigmas, props=props, gridsize=gridsize) plot(nmixt.part, asp=1, xlim=c(-3,3), ylim=c(-3,3), alpha=0.5) ## kernel mean shift partition set.seed(81928192) x <- rmvnorm.mixt(n=10000, mus=mus, Sigmas=Sigmas, props=props) msize <- round(prod(gridsize)*0.1) kms.nmixt.part <- kms.part(x=x, min.clust.size=msize, gridsize=gridsize) plot(kms.nmixt.part, asp=1, xlim=c(-3,3), ylim=c(-3,3), alpha=0.5)
Plot for kernel significant regions for 1- to 3-dimensional data.
## S3 method for class 'kfs' plot(x, display="filled.contour", col=7, colors, abs.cont, alpha=1, alphavec=0.4, add=FALSE, ...)
## S3 method for class 'kfs' plot(x, display="filled.contour", col=7, colors, abs.cont, alpha=1, alphavec=0.4, add=FALSE, ...)
x |
object of class |
display |
type of display, "slice" for contour plot, "persp" for perspective plot, "image" for image plot, "filled.contour" for filled contour plot (2-d); "plot3D", "rgl" (3-d) |
col , colors
|
colour for contour region |
abs.cont |
absolute contour height. Default is 0.5. |
alpha |
transparency value for contour (2-d) |
alphavec |
vector of transparency values for contour (3-d) |
add |
flag to add to current plot. Default is FALSE. |
... |
other graphics parameters used in |
Plots for 1-d and 2-d are sent to graphics window. Plot for 3-d is sent to graphics/RGL window.
data(geyser, package="MASS") geyser.fs <- kfs(geyser, binned=TRUE) plot(geyser.fs)
data(geyser, package="MASS") geyser.fs <- kfs(geyser, binned=TRUE) plot(geyser.fs)
Plot for kernel receiver operating characteristic curve (ROC) estimate 1- to 3-dimensional data.
## S3 method for class 'kroc' plot(x, add=FALSE, add.roc.ref=FALSE, xlab, ylab, alpha=1, col=1, ...)
## S3 method for class 'kroc' plot(x, add=FALSE, add.roc.ref=FALSE, xlab, ylab, alpha=1, col=1, ...)
x |
object of class |
add |
flag to add to current plot. Default is FALSE. |
add.roc.ref |
flag to add reference ROC curve. Default is FALSE. |
xlab |
x-axis label. Default is "False positive rate (bar(specificity))". |
ylab |
y-axis label. Default is "True positive rate (sensitivity)". |
alpha , col
|
transparency value and colour of line |
... |
other graphics parameters used in |
Plots for 1-d and 2-d are sent to graphics window. Plot for 3-d is sent to graphics/RGL window.
data(fgl, package="MASS") x1 <- fgl[fgl[,"type"]=="WinF",c("RI", "Na")] x2 <- fgl[fgl[,"type"]=="Head",c("RI", "Na")] Rhat <- kroc(x1=x1, x2=x2) plot(Rhat, add.roc.ref=TRUE)
data(fgl, package="MASS") x1 <- fgl[fgl[,"type"]=="WinF",c("RI", "Na")] x2 <- fgl[fgl[,"type"]=="Head",c("RI", "Na")] Rhat <- kroc(x1=x1, x2=x2) plot(Rhat, add.roc.ref=TRUE)
Plot for 1- to 3-dimensional normal and t-mixture density functions.
plotmixt(mus, sigmas, Sigmas, props, dfs, dist="normal", draw=TRUE, deriv.order=0, which.deriv.ind=1, binned=TRUE, ...)
plotmixt(mus, sigmas, Sigmas, props, dfs, dist="normal", draw=TRUE, deriv.order=0, which.deriv.ind=1, binned=TRUE, ...)
mus |
(stacked) matrix of mean vectors |
sigmas |
vector of standard deviations (1-d) |
Sigmas |
(stacked) matrix of variance matrices (2-d, 3-d) |
props |
vector of mixing proportions |
dfs |
vector of degrees of freedom |
dist |
"normal" - normal mixture, "t" - t-mixture |
draw |
flag to draw plot. Default is TRUE. |
deriv.order |
derivative order |
which.deriv.ind |
index of which partial derivative to plot |
binned |
flag for binned estimation of contour levels. Default is TRUE. |
... |
other graphics parameters, see |
If draw=TRUE
, the 1-d, 2-d plot is sent to graphics window, 3-d plot to
graphics/RGL window. If draw=FALSE
, then a kdde
-like object is returned.
## bivariate mus <- rbind(c(0,0), c(-1,1)) Sigma <- matrix(c(1, 0.7, 0.7, 1), nr=2, nc=2) Sigmas <- rbind(Sigma, Sigma) props <- c(1/2, 1/2) plotmixt(mus=mus, Sigmas=Sigmas, props=props, display="filled.contour", lwd=1) ## trivariate mus <- rbind(c(0,0,0), c(-1,0.5,1.5)) Sigma <- matrix(c(1, 0.7, 0.7, 0.7, 1, 0.7, 0.7, 0.7, 1), nr=3, nc=3) Sigmas <- rbind(Sigma, Sigma) props <- c(1/2, 1/2) plotmixt(mus=mus, Sigmas=Sigmas, props=props, dfs=c(11,8), dist="t")
## bivariate mus <- rbind(c(0,0), c(-1,1)) Sigma <- matrix(c(1, 0.7, 0.7, 1), nr=2, nc=2) Sigmas <- rbind(Sigma, Sigma) props <- c(1/2, 1/2) plotmixt(mus=mus, Sigmas=Sigmas, props=props, display="filled.contour", lwd=1) ## trivariate mus <- rbind(c(0,0,0), c(-1,0.5,1.5)) Sigma <- matrix(c(1, 0.7, 0.7, 0.7, 1, 0.7, 0.7, 0.7, 1), nr=3, nc=3) Sigmas <- rbind(Sigma, Sigma) props <- c(1/2, 1/2) plotmixt(mus=mus, Sigmas=Sigmas, props=props, dfs=c(11,8), dist="t")
Pre-sphered or pre-scaled version of data.
pre.sphere(x, mean.centred=FALSE) pre.scale(x, mean.centred=FALSE)
pre.sphere(x, mean.centred=FALSE) pre.scale(x, mean.centred=FALSE)
x |
matrix of data values |
mean.centred |
flag to centre the data values to have zero mean. Default is FALSE. |
For pre-scaling, the data values are pre-multiplied by
and for pre-scaling, by
where
is the sample variance and
is
where
is the i-th marginal sample variance.
Pre-sphered or pre-scaled version of data. These
pre-transformations are required for implementing the plug-in
Hpi
selectors and the smoothed cross validation
Hscv
selectors.
data(unicef) unicef.sp <- pre.sphere(as.matrix(unicef))
data(unicef) unicef.sp <- pre.sphere(as.matrix(unicef))
The quake
data set contains the geographical locations
of severe earthquakes in the years 100 and 2016 inclusive. The
plate
data set contains the geographical locations of the tectonic
plate boundaries.
data(quake) data(plate) data(quakesf) data(platesf)
data(quake) data(plate) data(quakesf) data(platesf)
–For quake
, a matrix with 5871 rows and 5 columns.
Each row corresponds to an earthquake.
The first column is the year (negative years indicate B.C.E.),
the second is the longitude (decimal degrees),
the third is the latitude (decimal degrees),
the fourth is the depth beneath the Earth's surface (km),
the fifth is a flag for the location inside the circum-Pacific belt
(aka Pacific Ring of Fire). quakesf
is a WGS84 sf
version with a point geometry.
–For plate
, a matrix with 6276 rows and 3 columns.
Each row corresponds to an location of the tectonic plate boundaries.
The first is the longitude,
the second is the latitude,
the third is the label of the tectonic plate.
platesf
is a WGS84 sf
spatial version with a multipolygon geometry, where the individual plate line segments have been merged into a single multipolygon.
Alhenius, H., Nordpil and Bird, P. (2014). World Tectonic Plates and Boundaries. https://github.com/fraxen/tectonicplates. Accessed 2021-03-11.
Bird, P. (2003) An updated digital model of plate boundaries, Geochemistry, Geophysics, Geosystems 4(3), 1-52. 1027.
NGDC/WDS (2017) Global significant earthquake database, National Geophysical Data Center, NOAA, doi:10.7289/V5TD9V7K. National Geophysical Data Center/World Data Service. Accessed 2017-03-30.
Derived quantities from kernel density estimates.
dkde(x, fhat) pkde(q, fhat) qkde(p, fhat) rkde(n, fhat, positive=FALSE)
dkde(x, fhat) pkde(q, fhat) qkde(p, fhat) rkde(n, fhat, positive=FALSE)
x , q
|
vector of quantiles |
p |
vector of probabilities |
n |
number of observations |
positive |
flag to compute KDE on the positive real line. Default is FALSE. |
fhat |
kernel density estimate, object of class |
pkde
uses the trapezoidal rule for the numerical
integration. rkde
uses
Silverman (1986)'s method to generate a random sample from a KDE.
For the 1-d kernel density estimate fhat
,
pkde
computes the cumulative probability for the quantile
q
, qkde
computes the quantile corresponding to the probability
p
.
For any kernel density estimate, dkde
computes the density value at
x
(it is an alias for predict.kde
), rkde
computes a random sample of size n
.
Silverman, B. (1986) Density Estimation for Statistics and Data Analysis. Chapman & Hall/CRC. London.
set.seed(8192) x <- rnorm.mixt(n=10000, mus=0, sigmas=1, props=1) fhat <- kde(x=x) p1 <- pkde(fhat=fhat, q=c(-1, 0, 0.5)) qkde(fhat=fhat, p=p1) y <- rkde(fhat=fhat, n=100) x <- rmvnorm.mixt(n=10000, mus=c(0,0), Sigmas=invvech(c(1,0.8,1))) fhat <- kde(x=x) y <- rkde(fhat=fhat, n=1000) fhaty <- kde(x=y) plot(fhat, col=1) plot(fhaty, add=TRUE, col=2)
set.seed(8192) x <- rnorm.mixt(n=10000, mus=0, sigmas=1, props=1) fhat <- kde(x=x) p1 <- pkde(fhat=fhat, q=c(-1, 0, 0.5)) qkde(fhat=fhat, p=p1) y <- rkde(fhat=fhat, n=100) x <- rmvnorm.mixt(n=10000, mus=c(0,0), Sigmas=invvech(c(1,0.8,1))) fhat <- kde(x=x) y <- rkde(fhat=fhat, n=1000) fhaty <- kde(x=y) plot(fhat, col=1) plot(fhaty, add=TRUE, col=2)
This data set contains the daily minimum and maximum temperatures from the weather station in Badajoz, Spain, from 1 January 1955 to 31 December 2015.
data(tempb)
data(tempb)
A matrix with 21908 rows and 5 columns. Each row corresponds to a daily measurement. The first column is the year (yyyy), the second is the month (mm), the third is the day (dd), the fourth is the minimum temperature (degrees Celsius), the fifth is the maximum temperature (degrees Celsius).
Menne, M. J., Durre, I., Vose, R. S., Gleason, B. E. & Houston, T. (2012) An overview of the global historical climatology network-daily database, Journal of Atmospheric and Oceanic Technology 429, 897 - 910. https://climexp.knmi.nl/selectdailyseries.cgi. Accessed 2016-10-20.
This data set contains the number of deaths of children under 5 years of age per 1000 live births and the average life expectancy (in years) at birth for 73 countries with GNI (Gross National Income) less than 1000 US dollars per annum per capita.
data(unicef)
data(unicef)
A matrix with 2 columns and 73 rows. Each row corresponds to a country. The first column is the under 5 mortality rate and the second is the average life expectancy.
Unicef (2003). State of the World's Children Report 2003, Oxford University Press, for Unicef.
The vec (vector) operator takes a matrix and stacks the
columns into a single vector of length
. The vech (vector
half) operator
takes a symmetric
matrix and stacks the lower
triangular half into a single vector of length
.
The functions invvec and invvech are the inverses of vec and
vech i.e. they form matrices from vectors.
vec(x, byrow=FALSE) vech(x) invvec(x, ncol, nrow, byrow=FALSE) invvech(x)
vec(x, byrow=FALSE) vech(x) invvec(x, ncol, nrow, byrow=FALSE) invvech(x)
x |
vector or matrix |
ncol , nrow
|
number of columns and rows for inverse of vech |
byrow |
flag for stacking row-wise or column-wise. Default is FALSE. |
Magnus, J.R. & Neudecker H.M. (2007) Matrix Differential Calculus with Applications in Statistics and Econometrics (3rd edition), Wiley & Sons. Chichester.
x <- matrix(1:9, nrow=3, ncol=3) vec(x) invvec(vec(x))
x <- matrix(1:9, nrow=3, ncol=3) vec(x) invvec(vec(x))
Variable kernel density estimate for 2-dimensional data.
kde.balloon(x, H, h, gridsize, gridtype, xmin, xmax, supp=3.7, eval.points, binned, bgridsize, w, compute.cont=TRUE, approx.cont=TRUE, verbose=FALSE) kde.sp(x, H, h, gridsize, gridtype, xmin, xmax, supp=3.7, eval.points, binned, bgridsize, w, compute.cont=TRUE, approx.cont=TRUE, verbose=FALSE)
kde.balloon(x, H, h, gridsize, gridtype, xmin, xmax, supp=3.7, eval.points, binned, bgridsize, w, compute.cont=TRUE, approx.cont=TRUE, verbose=FALSE) kde.sp(x, H, h, gridsize, gridtype, xmin, xmax, supp=3.7, eval.points, binned, bgridsize, w, compute.cont=TRUE, approx.cont=TRUE, verbose=FALSE)
x |
matrix of data values |
H |
bandwidth matrix. If this missing, |
h |
not yet implemented |
gridsize |
vector of number of grid points |
gridtype |
not yet implemented |
xmin , xmax
|
vector of minimum/maximum values for grid |
supp |
effective support for standard normal |
eval.points |
vector or matrix of points at which estimate is evaluated |
binned |
flag for binned estimation. |
bgridsize |
vector of binning grid sizes |
w |
vector of weights. Default is a vector of all ones. |
compute.cont |
flag for computing 1% to 99% probability contour levels. Default is TRUE. |
approx.cont |
flag for computing approximate probability contour levels. Default is TRUE. |
verbose |
flag to print out progress information. Default is FALSE. |
The balloon density estimate kde.balloon
employs bandwidths
which vary at each
estimation point (Loftsgaarden & Quesenberry, 1965). There are as many bandwidths as there are estimation
grid points. The default bandwidth is Hns(,deriv.order=2)
and
the subsequent bandwidths are derived via a minimal MSE formula.
The sample point density estimate kde.sp
employs bandwidths
which vary for each data point (Abramson, 1982).
There are as many bandwidths as there are data
points. The default bandwidth is Hns(,deriv.order=4)
and the
subsequent bandwidths are derived via the Abramson formula.
A variable kernel density estimate for bounded data is an object of class kde
.
Abramson, I. S. (1982) On bandwidth variation in kernel estimates - a square root law. Annals of Statistics, 10, 1217-1223.
Loftsgaarden, D. O. & Quesenberry, C. P. (1965) A nonparametric estimate of a multivariate density function. Annals of Mathematical Statistics, 36, 1049-1051.
data(worldbank) wb <- as.matrix(na.omit(worldbank[,4:5])) xmin <- c(-70,-35); xmax <- c(35,70) fhat <- kde(x=wb, xmin=xmin, xmax=xmax) fhat.sp <- kde.sp(x=wb, xmin=xmin, xmax=xmax) zmax <- max(fhat.sp$estimate) plot(fhat, display="persp", box=TRUE, phi=20, thin=1, border=grey(0,0.2), zlim=c(0,zmax)) plot(fhat.sp, display="persp", box=TRUE, phi=20, thin=1, border=grey(0,0.2), zlim=c(0,zmax)) ## Not run: fhat.ball <- kde.balloon(x=wb, xmin=xmin, xmax=xmax) plot(fhat.ball, display="persp", box=TRUE, phi=20, zlim=c(0,zmax)) ## End(Not run)
data(worldbank) wb <- as.matrix(na.omit(worldbank[,4:5])) xmin <- c(-70,-35); xmax <- c(35,70) fhat <- kde(x=wb, xmin=xmin, xmax=xmax) fhat.sp <- kde.sp(x=wb, xmin=xmin, xmax=xmax) zmax <- max(fhat.sp$estimate) plot(fhat, display="persp", box=TRUE, phi=20, thin=1, border=grey(0,0.2), zlim=c(0,zmax)) plot(fhat.sp, display="persp", box=TRUE, phi=20, thin=1, border=grey(0,0.2), zlim=c(0,zmax)) ## Not run: fhat.ball <- kde.balloon(x=wb, xmin=xmin, xmax=xmax) plot(fhat.ball, display="persp", box=TRUE, phi=20, zlim=c(0,zmax)) ## End(Not run)
This data set contains six development indicators for national entities for the year 2011, which is the latest year for which they are consistently available.
data(worldbank)
data(worldbank)
A matrix with 7 columns and 218 rows. Each row corresponds to a country. The first column is the country, the second is the per capita carbon dioxide emissions (thousands Kg), the third is the per capita GDP (thousands of current USD), the fourth is the annual GDP growth rate (%), the fifth is the annual inflation rate (%), the sixth is the percentage of internet users in the population (%), the seventh is the added value agricultural production as a ratio of the total GDP (%).
World Bank Group (2016) World development indicators. http://databank.worldbank.org/data/reports.aspx?source=world-development-indicators. Accessed 2016-10-03.